370 research outputs found
First-principles study of (BiScO3){1-x}-(PbTiO3){x} piezoelectric alloys
We report a first-principles study of a class of (BiScO3)_{1-x}-(PbTiO3)_x
(BS-PT) alloys recently proposed by Eitel et al. as promising materials for
piezoelectric actuator applications. We show that (i) BS-PT displays very large
structural distortions and polarizations at the morphotropic phase boundary
(MPB) (we obtain a c/a of ~1.05-1.08 and P_tet of ~1.1 C/m^2); (ii) the
ferroelectric and piezoelectric properties of BS-PT are dominated by the onset
of hybridization between Bi/Pb-6p and O-2p orbitals, a mechanism that is
enhanced upon substitution of Pb by Bi; and (iii) the piezoelectric responses
of BS-PT and Pb(Zr_{1-x}Ti_x)O3 (PZT) at the MPB are comparable, at least as
far as the computed values of the piezoelectric coefficient d_15 are concerned.
While our results are generally consistent with experiment, they also suggest
that certain intrinsic properties of BS-PT may be even better than has been
indicated by experiments to date. We also discuss results for PZT that
demonstrate the prominent role played by Pb displacements in its piezoelectric
properties.Comment: 6 pages, with 3 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/ji_bi/index.htm
Ab-initio design of perovskite alloys with predetermined properties: The case of Pb(Sc_{0.5} Nb_{0.5})O_{3}
A first-principles derived approach is combined with the inverse Monte Carlo
technique to determine the atomic orderings leading to prefixed properties in
Pb(Sc_{0.5}Nb_{0.5})O_{3} perovskite alloy. We find that some arrangements
between Sc and Nb atoms result in drastic changes with respect to the
disordered material, including ground states of new symmetries, large
enhancement of electromechanical responses, and considerable shift of the Curie
temperature. We discuss the microscopic mechanisms responsible for these
unusual effects.Comment: 5 pages with 2 postscript figures embedde
Properties of Pb(Zr,Ti)O ultrathin films under stress-free and open-circuit electrical boundary conditions
A first-principles-based scheme is developed to simulate properties of (001)
PbO-terminated Pb(ZrTi)O thin films that are under
stress-free and open-circuit boundary conditions. Their low-temperature
spontaneous polarization never vanishes down to the minimal thickness, and
continuously rotates between the in-plane and directions when
varying the Ti composition around x=0.50. Such rotation dramatically enhances
piezoelectricity and dielectricity. Furthermore, the order of some phase
transitions changes when going from bulk to thin films.Comment: 11 pages, 3 figure
Towards multicaloric effect with ferroelectrics
This work was supported in part by the National Science Foundation (Grant No. CMMI-#1361713) and by DOE Ames Laboratory on “The Caloric Materials Consortium”. L.B. acknowledges the support of ARO Grant No. W911NF-16-1-0227. B.D. acknowledges a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (Grant No. ANR-10-LABX-0035, Labex NanoSaclay) and Fonds National de la Recherche du Luxembourg (FNR) through InterMobility Project No. 16/1159210 “MULTICALOR”.Utilizing thermal changes in solid state materials strategically offers caloric-based alternatives to replace current vapor-compression technology. To make full use of multiple forms of the entropy and achieve higher efficiency for designs of cooling devices, the multicaloric effect appears as a cutting-edge concept encouraging researchers to search for multicaloric materials with outstanding caloric properties. Here we report the multicaloric effect in BaTiO3 single crystals driven simultaneously by mechanical and electric fields and described via a thermodynamic phenomenological model. It is found that the multicaloric behavior is mainly dominated by the mechanical field rather than the electric field, since the paraelectric-to-ferroelectric transition is more sensitive to mechanical field than to electric field. The use of uniaxial stress competes favorably with pressure due to its much higher caloric strength and negligible elastic thermal change. It is revealed that multicaloric response can be significantly larger than just the sum of mechanocaloric and electrocaloric effects in temperature regions far above the Curie temperature but cannot exceed this limit near the Curie temperature. Our results also show the advantage of the multicaloric effect over the mechanically-mediated electrocaloric effect or electrically-mediated mechanocaloric effect. Our findings therefore highlight the importance of ferroelectric materials to develop multicaloric cooling.PostprintPeer reviewe
Soft Phonon Anomalies in the Relaxor Ferroelectric Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3
Neutron inelastic scattering measurements of the polar TO phonon mode
dispersion in the cubic relaxor Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3 at 500K reveal
anomalous behavior in which the optic branch appears to drop precipitously into
the acoustic branch at a finite value of the momentum transfer q=0.2 inverse
Angstroms, measured from the zone center. We speculate this behavior is the
result of nanometer-sized polar regions in the crystal.Comment: 4 pages, 4 figure
Spin Switching and Magnetization Reversal in Single-Crystal NdFeO\u3csub\u3e3\u3c/sub\u3e
We report an experimental and computational study of single-crystal NdFeO3, which features two inequivalent magnetic sublattices, namely, Fe and Nd sublattices that are coupled in an antiparallel fashion. This paper reveals that a strong interaction between 3d and 4f electrons of the two sublattices along with a spin-lattice coupling drives an extremely interesting magnetic state that is highly sensitive to the orientation and history of weak magnetic field. The following phenomena are particularly remarkable: (1) sharply contrasting magnetization M(T) along the a and c axes; (2) a first-order spin switching along the a axis below 29 K when the system is zero-field-cooled; and (3) a progressive magnetization reversal when the system is field-cooled. The intriguing magnetic behavior is captured in our first-principles density functional theory calculations
Nonlinear phonon Hall effects in ferroelectrics: its existence and non-volatile electrical control
Nonlinear Hall effects have been previously investigated in
non-centrosymmetric systems for electronic systems. However, they only exist in
metallic systems and are not compatible with ferroelectrics since these latter
are insulators, hence limiting their applications. On the other hand,
ferroelectrics naturally break inversion symmetry and can induce a non-zero
Berry curvature. Here, we show that a non-volatile electric-field control of
heat current can be realized in ferroelectrics through the nonlinear phonon
Hall effects. More precisely, based on Boltzmann equation under the
relaxation-time approximation, we derive the equation for nonlinear phonon Hall
effects, and further show that the behaviors of nonlinear phonon (Boson) Hall
effects are very different from nonlinear Hall effects for electrons (Fermion).
Our work provides a route for electric-field control of thermal Hall current in
ferroelectrics.Comment: 16 pages, 2 figure
Virtual-crystal approximation that works: Locating a composition phase boundary in Pb(Zr_{1-x}Ti_3)O_3
We present a new method for modeling disordered solid solutions, based on the
virtual crystal approximation (VCA). The VCA is a tractable way of studying
configurationally disordered systems; traditionally, the potentials which
represent atoms of two or more elements are averaged into a composite atomic
potential. We have overcome significant shortcomings of the standard VCA by
developing a potential which yields averaged atomic properties. We perform the
VCA on a ferroelectric oxide, determining the energy differences between the
high-temperature rhombohedral, low-temperature rhombohedral and tetragonal
phases of Pb(Zr_{1-x}Ti_x)O_3 at x=0.5 and comparing these results to
superlattice calculations and experiment. We then use our new method to
determine the preferred structural phase at x=0.4. We find that the
low-temperature rhombohedral phase becomes the ground state at x=0.4, in
agreement with experimental findings.Comment: 5 pages, no figure
Phenomenological theory of phase transitions in highly piezoelectric perovskites
Recently discovered fine structure of the morphotropic phase boundaries in
highly piezoelectric mixture compounds PZT, PMN-PT, and PZN-PT demonstrates the
importance of highly non-linear interactions in these systems. We show that an
adequate Landau-type description of the ferroelectric phase transitions in
these compounds is achieved by the use of a twelfth-order expansion of the
Landau potential in terms of the phenomenological order parameter.
Group-theoretical and catastrophe-theory methods are used in constructing the
appropriate Landau potential. A complete phase diagram is calculated in
phenomenological parameter space. The theory describes both PZT and PZN-PT
types of phase diagrams, including the newly found monoclinic and orthorhombic
phases. Anomalously large piezoelectric coefficients are predicted in the
vicinity of the phase transition lines.Comment: RevTex4, 8 pages, 2 figures. Dramatically changed after referees'
Comments, to appear in Phys. Rev. B, 1 April 200
- …