63 research outputs found

    Calculation of the Two-Loop Heavy-Flavor Contribution to Bhabha Scattering

    Full text link
    We describe in detail the calculation of the two-loop corrections to the QED Bhabha scattering cross section due to the vacuum polarization by heavy fermions. Our approach eliminates one mass scale from the most challenging part of the calculation and allows us to obtain the corrections in a closed analytical form. The result is valid for arbitrary values of the heavy fermion mass and the Mandelstam invariants, as long as s,t,u >> m_e^2.Comment: 43 pages, 8 figures; added reference

    Soft, collinear and non-relativistic modes in radiative decays of very heavy quarkonium

    Get PDF
    We analyze the end-point region of the photon spectrum in semi-inclusive radiative decays of very heavy quarkonium (m alpha_s^2 >> Lambda_QCD). We discuss the interplay of the scales arising in the Soft-Collinear Effective Theory, m, m(1-z)^{1/2} and m(1-z) for z close to 1, with the scales of heavy quarkonium systems in the weak coupling regime, m, m alpha_s and m alpha_s^2. For 1-z \sim alpha_s^2 only collinear and (ultra)soft modes are seen to be relevant, but the recently discovered soft-collinear modes show up for 1-z << alpha_s^2. The S- and P-wave octet shape functions are calculated. When they are included in the analysis of the photon spectrum of the Upsilon (1S) system, the agreement with data in the end-point region becomes excellent. The NRQCD matrix elements and are also obtained.Comment: Revtex, 11 pages, 6 figures. Minor improvements and references added. Journal versio

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Collider aspects of flavour physics at high Q

    Get PDF
    This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103

    A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers

    Constraints on the cosmic expansion history from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0=688+12km  s1Mpc1{H}_{0}={68}_{-8}^{+12}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8km  s1Mpc1{H}_{0}={68}_{-6}^{+8}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814

    Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

    Get PDF
    Peer reviewe

    Mathematical modelling of elastic vibrations arising from four-body impact interaction

    No full text
    This paper presents a mathematical model of elastic vibrations arising from shock interaction in a four-body system. The resulting model has two applications: the study of linear elastic interaction and the study of nonlinear elastic interaction. The linear elastic body model is presented in analytical form. In the transition to nonlinear interaction, it is difficult to represent the model in analytical approximation. The application of numerical algorithms has made it possible to obtain solution of a nonlinear problem with a specified accuracy sufficient for the simulated process. The model is intended for the description of the behavior of the device for measuring the modulus of elasticity of soil by the stamp method. An algorithm is developed to obtain the displacement and acceleration of the falling load and the loading die. Under laboratory conditions, an experiment with a test rig capable of measuring the acceleration of a loading die during shock-elastic interaction with the falling load is conducted. The measuring part is a three-axis accelerometer sensor connected to a four-channel analog-digital converter, which transmits the data to a mobile device with the developed specialized software. The sampling frequency of the measuring system is 12 kHz for each of the four channels. Polyurethane was used as a nonlinear element of the system, the approximate stiffness of which was determined experimentally by measuring deformations under a given load. When comparing the experimental results with the simulation results, the numerical model parameters were optimized by an algorithm based on gradient descent, which was based on maximizing the correlation coefficient between the theoretical and experimental data
    corecore