206 research outputs found

    Circummutation in the growth of Chara rhizoids

    Get PDF
    Chara rhizoids, cylindrical cells growing in tbeir apex, having the capability of positive orthogravitropic response, while growing without any change of position arc not idcally straight, but they arc characterised by slight and repeating cyclic bendings. The mean distancc between successive bendings is 150 µm. The bendings appcar morc or less every 1.5 hour at rhizoids' growth rate of abo ut I 00 µm h-1• Aftcr the displacement of the rhizoids from the vertical to the horizontal position, during the g, ,vireaction, the curvature proceeds in stages, in which, alternatingly, there appear 1,;riods of higher or !ower curvature. The curvaturc of succcssivc higber bendings decreacs when the rhizoid reachcs the vertical direction. It seems that gravireaction is based on the increase of the maxima) curvature of cyclic bendings and directing the bendings into a vertical piane. Other tip growing cells, generally straight, such as root hairs or hyphae of Mucor and Phycomyces, also show the repeating bendings

    Leptin and the Regulation of Renal Sodium Handling and Renal Na+-Transporting ATPases: Role in the Pathogenesis of Arterial Hypertension

    Get PDF
    Leptin, an adipose tissue hormone which regulates food intake, is also involved in the pathogenesis of arterial hypertension. Plasma leptin concentration is increased in obese individuals. Chronic leptin administration or transgenic overexpression increases blood pressure in experimental animals, and some studies indicate that plasma leptin is elevated in hypertensive subjects independently of body weight. Leptin has a dose- and time-dependent effect on urinary sodium excretion. High doses of leptin increase Na+ excretion in the short run; partially by decreasing renal Na+,K+-ATPase (sodium pump) activity. This effect is mediated by phosphatidylinositol 3-kinase (PI3K) and is impaired in animals with dietary-induced obesity. In contrast to acute, chronic elevation of plasma leptin to the level observed in patients with the metabolic syndrome impairs renal Na+ excretion, which is associated with the increase in renal Na+,K+-ATPase activity. This effect results from oxidative stress-induced deficiency of nitric oxide and/or transactivation of epidermal growth factor receptor and subsequent stimulation of extracellular signal-regulated kinases. Ameliorating “renal leptin resistance” or reducing leptin level and/or leptin signaling in states of chronic hyperleptinemia may be a novel strategy for the treatment of arterial hypertension associated with the metabolic syndrome

    Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tAdipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factors (EDHF). Previously it has been demonstrated that in short-term obesity the NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated, respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The study was performed in 5 groups of rats: (1) control, (2) treated with exogenous leptin for 1 week to induce hyperleptinemia, (3) obese, fed highly-palatable diet for 4 weeks, (4) obese treated with pegylated superactive rat leptin receptor antagonist (PEG-SRLA) for 1 week, (5) fed standard chow and treated with PEG-SRLA. Acute effect of leptin on isometric tension of mesenteric artery segments was measured ex vivo. Leptin relaxed phenylephrine-preconstricted vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of cystathionine γ-lyase, propargylglycine, or a hydrogen sulfide (H2S) scavenger, bismuth (III) subsalicylate. The results indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least partially, by H2S.The study was supported by the EU Project “The equipment of innovative laboratories doing research on new medicines used in the therapy of civilization and neoplastic diseases” within the Operational Program Development of Eastern Poland 2007 - 2013, Priority Axis I Modern Economy, Operations I.3 Innovation Promotion. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Effect of onion and beet on plasma and liver lipids, platelet aggregation, and erythrocyte Na efflux in simvastatin treated hypercholesterolmic rats

    Get PDF
    This study was purposed to investigate the effect of onion or beet on plasma and liver lipids, erythrocyte Na efflux channels and platelet aggregation in simvastatin (SIM) treated hypercholesterolemic rats. Forty Sprague Dawley rats were divided into four groups and fed 0.5% cholesterol based diets containing 2 mg/kg BW simvastatin or simvastatin with 5% onion or beet powder. Plasma total cholesterol was significantly increased in SIM group compared with the control (p<0.01), and the elevated plasma total cholesterol of SIM group was significantly decreased in SIM-onion and SIM-beet groups (p<0.05). HDL-cholesterol in SIM-beet group was significantly increased compared with other groups (p<0.05). Platelet aggregation in both the maximum and initial slope was significantly decreased in SIM group compared with SIM-onion group (p<0.05). Na-K ATPase was significantly decreased in SIM group compared with the control, SIM-onion and SIM-beet groups (p<0.05). Na passive leak was significantly increased in all groups treated with SIM compared with the control (p<0.05). The total Na efflux was decreased in SIM group and increased in SIM-onion group and the difference between these two groups was significant (p<0.05). There was no difference in intracellular Na among groups. In present study, simvastatin, a HMG CoA reductase inhibitor at dose of 2mg/kg BW/day rather increased plasma total cholesterol in rats, inferring that the action mechanism of simvastatin on cholesterol metabolism differ between rat and human. Onion and beet play favorable roles in cardiovascular system by restoring the reduced Na efflux through Na-K ATPase and Na-K cotransport in SIM treated rats

    Investigating interactions between epicardial adipose tissue and cardiac myocytes: what can we learn from different approaches?

    Get PDF
    Heart disease is a major cause of morbidity and mortality throughout the world. Some cardiovascular conditions can be modulated by lifestyle factors such as increased exercise or a healthier diet, but many require surgical or pharmacological interventions for their management. More targeted and less invasive therapies would be beneficial. Recently it has become apparent that epicardial adipose tissue plays an important role in normal and pathological cardiac function, and it is now the focus of considerable research. Epicardial adipose tissue can be studied by imaging of various kinds, and these approaches have yielded much useful information. However at a molecular level it is more difficult to study as it is relatively scarce in animal models and, for practical and ethical reasons, not always available in sufficient quantities from patients. What is needed is a robust model system in which the interactions between epicardial adipocytes and cardiac myocytes can be studied, and physiologically relevant manipulations performed. There are drawbacks to conventional culture methods, not least the difficulty of culturing both cardiac myocytes and adipocytes, each of which has special requirements. We discuss the benefits of a three-dimensional co-culture model in which in vivo interactions can be replicated

    The Role of Visfatin in Diabetic Nephropathy

    Get PDF
    As a result of the energy overload in obesity, insulin resistance, type 2 diabetes, dyslipidemia, hypertension, and atherosclerosis develop, which together comprise the metabolic syndrome. Although the kidney becomes a victim of hyperglycemia in diabetes mellitus, recent work has shown that the abnormalities of lipid and glucose metabolism in the kidney are similarly important to those in adipose tissue. Interestingly, obesity triggers the release of adipokines such as leptin, resistin, and visfatin, and these can then be associated with the progression of diabetic nephropathy and other vascular complications. These adipokines, which are also synthesized in the kidney, appear to have an important role in renal injury associated with insulin resistance. Our studies found that visfatin is not only a surrogate marker of systemic inflammation in type 2 diabetic patients but is also up-regulated in diabetic kidney through the uptake of glucose into renal cells, which leads to the activation of the intracellular insulin signaling pathway and pro-inflammatory mechanisms. However, we also observed a beneficial effect of visfatin administration to type 2 diabetic mice. Visfatin injection improved diabetic nephropathy in vivo, in contrast to our previous in vitro study of cultured renal mesangial cells. These results suggest the possibility of multiple cross-talk between adipose tissue and kidney in the metabolic syndrome, particularly in diabetic nephropathy. Further study should be undertaken to understand the role of adipose tissue and kidney as major organs in the metabolic syndrome

    Investigating the Effects of Statins on Cellular Lipid Metabolism Using a Yeast Expression System

    Get PDF
    In humans, defects in lipid metabolism are associated with a number of severe diseases such as atherosclerosis, obesity and type II diabetes. Hypercholesterolemia is a primary risk factor for coronary artery disease, the major cause of premature deaths in developed countries. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the sterol synthesis pathway. Since yeast Saccharomyces cerevisiae harbours many counterparts of mammalian enzymes involved in lipid-synthesizing pathways, conclusions drawn from research with this single cell eukaryotic organism can be readily applied to higher eukaryotes. Using a yeast strain with deletions of both HMG1 and HMG2 genes (i.e. completely devoid of HMGR activity) with introduced wild-type or mutant form of human HMGR (hHMGR) gene we investigated the effects of statins on the lipid metabolism of the cell. The relative quantification of mRNA demonstrated a different effect of simvastatin on the expression of the wild-type and mutated hHMGR gene. GC/MS analyses showed a significant decrease of sterols and enhanced conversion of squalene and sterol precursors into ergosterol. This was accompanied by the mobilization of ergosterol precursors localized in lipid particles in the form of steryl esters visualized by confocal microscopy. Changes in the level of ergosterol and its precursors in cells treated with simvastatin depend on the mutation in the hHMGR gene. HPLC/MS analyses indicated a reduced level of phospholipids not connected with the mevalonic acid pathway. We detected two significant phenomena. First, cells treated with simvastatin develop an adaptive response compensating the lower activity of HMGR. This includes enhanced conversion of sterol precursors into ergosterol, mobilization of steryl esters and increased expression of the hHMGR gene. Second, statins cause a substantial drop in the level of glycerophospholipids

    Elevated levels of plasma homocysteine, deficiencies in dietary folic acid and uracil–DNA glycosylase impair learning in a mouse model of vascular cognitive impairment

    Get PDF
    Dietary deficiencies in folic acid result in elevated levels of plasma homocysteine, which has been associated with the development of dementia and other neurodegenerative disorders. Previously, we have shown that elevated levels of plasma homocysteine in mice deficient for a DNA repair enzyme, uracil–DNA glycosylase (UNG), result in neurodegeneration. The goal of this study was to evaluate how deficiencies in folic acid and UNG along with elevated levels of homocysteine affect vascular cognitive impairment, via chronic hypoperfusion in an animal model. Ung+/+ and Ung−/− mice were placed on either control (CD) or folic acid deficient (FADD) diets. Six weeks later, the mice either underwent implantation of microcoils around both common carotid arteries. Post-operatively, behavioral tests began at 3-weeks, angiography was measured after 5-weeks using MRI to assess vasculature and at completion of study plasma and brain tissue was collected for analysis. Learning impairments in the Morris water maze (MWM) were observed only in hypoperfused Ung−/− FADD mice and these mice had significantly higher plasma homocysteine concentrations. Interestingly, Ung+/+ FADD produced significant remodeling of the basilar artery and arterial vasculature. Increased expression of GFAP was observed in the dentate gyrus of Ung−/− hypoperfused and FADD sham mice. Chronic hypoperfusion resulted in increased cortical MMP-9 protein levels of FADD hypoperfused mice regardless of genotypes. These results suggest that elevated levels of homocysteine only, as a result of dietary folic acid deficiency, don’t lead to memory impairments and neurobiochemical changes. Rather a combination of either chronic hypoperfusion or UNG deficiency is required

    Metabolic Programming during Lactation Stimulates Renal Na+ Transport in the Adult Offspring Due to an Early Impact on Local Angiotensin II Pathways

    Get PDF
    BACKGROUND: Several studies have correlated perinatal malnutrition with diseases in adulthood, giving support to the programming hypothesis. In this study, the effects of maternal undernutrition during lactation on renal Na(+)-transporters and on the local angiotensin II (Ang II) signaling cascade in rats were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Female rats received a hypoproteic diet (8% protein) throughout lactation. Control and programmed offspring consumed a diet containing 20% protein after weaning. Programming caused a decrease in the number of nephrons (35%), in the area of the Bowman's capsule (30%) and the capillary tuft (30%), and increased collagen deposition in the cortex and medulla (by 175% and 700%, respectively). In programmed rats the expression of (Na(+)+K(+))ATPase in proximal tubules increased by 40%, but its activity was doubled owing to a threefold increase in affinity for K(+). Programming doubled the ouabain-insensitive Na(+)-ATPase activity with loss of its physiological response to Ang II, increased the expression of AT(1) and decreased the expression of AT(2) receptors), and caused a pronounced inhibition (90%) of protein kinase C activity with decrease in the expression of the α (24%) and ε (13%) isoforms. Activity and expression of cyclic AMP-dependent protein kinase decreased in the same proportion as the AT(2) receptors (30%). In vivo studies at 60 days revealed an increased glomerular filtration rate (GFR) (70%), increased Na(+) excretion (80%) and intense proteinuria (increase of 400% in protein excretion). Programmed rats, which had normal arterial pressure at 60 days, became hypertensive by 150 days. CONCLUSIONS/SIGNIFICANCE: Maternal protein restriction during lactation results in alterations in GFR, renal Na(+) handling and in components of the Ang II-linked regulatory pathway of renal Na(+) reabsorption. At the molecular level, they provide a framework for understanding how metabolic programming of renal mechanisms contributes to the onset of hypertension in adulthood
    corecore