8 research outputs found

    Vascular Endothelial Growth Factor Augments the Tolerance Towards Cerebral Stroke by Enhancing Neurovascular Repair Mechanism

    Get PDF
    The breakdown of the blood-brain barrier (BBB) is a critical event in the development of secondary brain injury after stroke. Among the cellular hallmarks in the acute phase after stroke are a downregulation of tight-junction molecules and the loss of microvascular pericyte coverage and endothelial sealing. Thus, a rapid repair of blood vessel integrity and re-stabilization of the BBB is considered an important strategy to reduce secondary brain damage. However, the mechanisms underlying BBB disruption remain poorly understood. Especially, the role of VEGF in this context remains inconclusive. With the conditional and reversible VEGF expression systems, we studied the time windows of deleterious and beneficial VEGF actions on blood vessel integrity in mice. Using genetic systems for gain of function and loss of function experiments, we activated and inhibited VEGF signaling prior and simultaneously to ischemic stroke onset. In both scenarios, VEGF seems to play a vital role in containing the stroke-induced damage after cerebral ischemia. We report that the transgenic overexpression of VEGF (GOF) prior to the stroke stabilizes the vasculature and prevents blood-brain barrier disruption in young and aged animals after stroke. Whereas inhibition of signals for endogenous VEGF (LOF) prior to stroke results in bigger infarction with massive brain swelling and enhanced BBB permeability, furthermore, activating or blocking VEGF signaling after ischemic stroke onset had comparable effects on BBB repair and cerebral edema. VEGF can function as an anti-permeability factor, and a VEGF-based therapy in the context of stroke prevention and recovery has an enormous potential

    Pelagic molybdenum concentration anomalies and the impact of sediment resuspension on the molybdenum budget in two tidal systems of the North Sea

    Get PDF
    The seasonal dynamics of molybdenum (Mo) were studied in the water column of two tidal basins of the German Wadden Sea (Sylt-Rømø and Spiekeroog) between 2007 and 2011. In contrast to its conservative behaviour in the open ocean, both, losses of more than 50% of the usual concentration level of Mo in seawater and enrichments up to 20% were observed repeatedly in the water column of the study areas. During early summer, Mo removal by adsorption on algae-derived organic matter (e.g. after Phaeocystis blooms) is postulated to be a possible mechanism. Mo bound to organic aggregates is likely transferred to the surface sediment where microbial decomposition enriches Mo in the pore water. First δ98/95Mo data of the study area disclose residual Mo in the open water column being isotopically heavier than MOMo (Mean Ocean Molybdenum) during a negative Mo concentration anomaly, whereas suspended particulate matter shows distinctly lighter values. Based on field observations a Mo isotope enrichment factor of ε = −0.3‰ has been determined which was used to argue against sorption on metal oxide surfaces. It is suggested here that isotope fractionation is caused by biological activity and association to organic matter. Pelagic Mo concentration anomalies exceeding the theoretical salinity-based concentration level, on the other hand, cannot be explained by replenishment via North Sea waters alone and require a supply of excess Mo. Laboratory experiments with natural anoxic tidal flat sediments and modelled sediment displacement during storm events suggest fast and effective Mo release during the resuspension of anoxic sediments in oxic seawater as an important process for a recycling of sedimentary sulphide bound Mo into the water column

    Erratum: Contact sensitization to plants of the Compositae family: Data of the Information Network of Departments of Dermatology (IVDK) from 2007 to 2016 (vol 80, pg 222, 2019)

    No full text
    Baron JM, Grabbe J, Ludwig A, et al. Erratum: Contact sensitization to plants of the Compositae family: Data of the Information Network of Departments of Dermatology (IVDK) from 2007 to 2016 (vol 80, pg 222, 2019). Contact Dermatitis. 2019;80(6):415

    Melanonychia.

    No full text
    corecore