12 research outputs found

    Carbamylated LDL

    No full text
    PubMed ID: 20857617[No abstract available

    Uptake of Foreign Nucleic Acids in Kidney Tubular Epithelial Cells Deficient in Proapoptotic Endonucleases

    No full text
    Degradation of DNA during gene delivery is an obstacle for gene transfer and for gene therapy. DNases play a major role in degrading foreign DNA. However, which of the DNases are involved and whether their inactivation can improve gene delivery have not been studied. We have recently identified deoxyribonuclease I (DNase I) and endonuclease G (EndoG) as the major degradative enzymes in the mouse kidney proximal tubule epithelial (TKPTS) cells. In this study, we used immortalized mouse TKPTS cells and primary tubular epithelial cells isolated from DNase I or EndoG knockout (KO) mice and examined the degradation of plasmid DNA during its uptake. DNase I and EndoG KO cells showed a higher rate of transfection by pECFP-N1 plasmid than wild-type cells. In addition, EndoG KO cells prevented the uptake of fluorescent-labeled RNA. Complete inhibition of secreted DNase I by G-actin did not improve plasmid transfection, indicating that only intracellular DNase I affects DNA stability. Data demonstrate the importance of DNase I and EndoG in host cell defense against gene and RNA delivery to renal tubular epithelial cells in vitro

    Supplementary Material for: Urine Catalytic Iron and Neutrophil Gelatinase-Associated Lipocalin as Companion Early Markers of Acute Kidney Injury after Cardiac Surgery: A Prospective Pilot Study

    No full text
    <b><i>Background:</i></b> Open heart surgery with cardiopulmonary bypass is recognized as a common cause of acute kidney injury (AKI). The conventional biomarker creatinine is not sensitive enough to detect AKI until a significant decline in renal filtration has occurred. Urine neutrophil gelatinase-associated lipocalin (NGAL), part of an acute response to the release of tissue iron from cells, is an early biomarker and a predictor of AKI in a variety of clinical settings. We sought to evaluate the relationship between urine catalytic iron (unbound iron) and NGAL over the course of AKI due to cardiac surgery. <b><i>Methods:</i></b> Fourteen patients who underwent open heart surgery had the following measured: serum creatinine (0, 12, 24, 48 and 72 h postoperatively), urine NGAL and urine catalytic iron (0, 8, 24 and 48 h postoperatively). Urine NGAL and urine catalytic iron were quantified by immunoassay and bleomycin-detectable iron assay, respectively. AKI was defined by the Acute Kidney Injury Network (AKIN) criteria. <b><i>Results:</i></b> Urine catalytic iron increased significantly (p < 0.05) within 8 h and peaked at 24 h postoperatively in patients who developed AKI (n = 8, baseline 101.96 ± 177.48, peak 226.35 ± 238.23 nmol/l, p = 0.006), but not in non-AKI patients (n = 6, baseline 131.08 ± 116.21, peak 163.99 ± 109.62 nmol/l, p = 0.380). Urine NGAL levels also peaked at 24 h with significant increase observed only in AKI patients: AKI – baseline 34.88 ± 26.47, peak 65.50 ± 27.03 ng/ml, p = 0.043; non-AKI – baseline 59.33 ± 31.72, peak 71.00 ± 31.76 ng/ml, p = 0.100. The correlation between baseline levels of urine catalytic iron and NGAL and peak levels of urine catalytic iron and NGAL was r = 0.86, p < 0.0001. <b><i>Conclusion:</i></b> Urine catalytic iron appears to rise and fall in concert with NGAL in patients undergoing cardiac surgery and may be indicative of early AKI. Future research into the role that catalytic iron plays in acute organ injury syndromes and its potential diagnostic and therapeutic implications is warranted
    corecore