1,029 research outputs found
The extreme vulnerability of interdependent spatially embedded networks
Recent studies show that in interdependent networks a very small failure in
one network may lead to catastrophic consequences. Above a critical fraction of
interdependent nodes, even a single node failure can invoke cascading failures
that may abruptly fragment the system, while below this "critical dependency"
(CD) a failure of few nodes leads only to small damage to the system. So far,
the research has been focused on interdependent random networks without space
limitations. However, many real systems, such as power grids and the Internet,
are not random but are spatially embedded. Here we analytically and numerically
analyze the stability of systems consisting of interdependent spatially
embedded networks modeled as lattice networks. Surprisingly, we find that in
lattice systems, in contrast to non-embedded systems, there is no CD and
\textit{any} small fraction of interdependent nodes leads to an abrupt
collapse. We show that this extreme vulnerability of very weakly coupled
lattices is a consequence of the critical exponent describing the percolation
transition of a single lattice. Our results are important for understanding the
vulnerabilities and for designing robust interdependent spatial embedded
networks.Comment: 13 pages, 5 figure
The robustness of interdependent clustered networks
It was recently found that cascading failures can cause the abrupt breakdown
of a system of interdependent networks. Using the percolation method developed
for single clustered networks by Newman [Phys. Rev. Lett. {\bf 103}, 058701
(2009)], we develop an analytical method for studying how clustering within the
networks of a system of interdependent networks affects the system's
robustness. We find that clustering significantly increases the vulnerability
of the system, which is represented by the increased value of the percolation
threshold in interdependent networks.Comment: 6 pages, 6 figure
Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series
Notwithstanding the significant efforts to develop estimators of long-range
correlations (LRC) and to compare their performance, no clear consensus exists
on what is the best method and under which conditions. In addition, synthetic
tests suggest that the performance of LRC estimators varies when using
different generators of LRC time series. Here, we compare the performances of
four estimators [Fluctuation Analysis (FA), Detrended Fluctuation Analysis
(DFA), Backward Detrending Moving Average (BDMA), and centred Detrending Moving
Average (CDMA)]. We use three different generators [Fractional Gaussian Noises,
and two ways of generating Fractional Brownian Motions]. We find that CDMA has
the best performance and DFA is only slightly worse in some situations, while
FA performs the worst. In addition, CDMA and DFA are less sensitive to the
scaling range than FA. Hence, CDMA and DFA remain "The Methods of Choice" in
determining the Hurst index of time series.Comment: 6 pages (including 3 figures) + 3 supplementary figure
The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens
Belowground interactions between plant roots, mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR) can improve plant health via enhanced nutrient acquisition and priming of the plant immune system. Two wheat cultivars differing in their ability to form mycorrhiza were (co)inoculated with the mycorrhizal fungus Rhizophagus irregularis and the rhizobacterial strain Pseudomonas putida KT2440. The cultivar with high mycorrhizal compatibility supported higher levels of rhizobacterial colonization than the low compatibility cultivar. Those levels were augmented by mycorrhizal infection. Conversely, rhizobacterial colonization of the low compatibility cultivar was reduced by mycorrhizal arbuscule formation. Single inoculations with R. irregularis or P. putida had differential growth effects on both cultivars. Furthermore, while both cultivars developed systemic priming of chitosan-induced callose after single inoculations with R. irregularis or P. putida, only the cultivar with high mycorrhizal compatibility showed a synergistic increase in callose responsiveness following co-inoculation with both microbes. Our results show that multilateral interactions between roots, mycorrhizal fungi and PGPR can have synergistic effects on growth and systemic priming of wheat
Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?
Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth
Population dynamics and identification of efficient strains of Azospirillum in maize ecosystems of Bihar (India)
Information on inoculum load and diversity of native microbial community is an important prerequisite for crop management of microbial origin. Azospirillum has a proven role in benefiting the maize (Zea mays) crop in terms of nutrient (nitrogen) supply as well as plant growth enhancement. Bihar state has highest average national maize productivity although fertilizer consumption is minimum, indicating richness of Azospirillum both in terms of population and diversity in soils. An experiment was planned to generate basic information on Azospirillum population variation in maize soils under different agricultural practices and soil types of Bihar, to identify suitable agricultural practices supporting the target microorganism and efficient Azospirillum strain(s). No tillage, growing traditional maize cultivar, land use history (diara soil having history of maize cultivation), soil organic carbon (>1%) and intercrop with oat supported prevalence of Azospirillum in maize rhizosphere. Native Azospirillum population varied from 1 million to 1 billion/g soil under diverse agricultural practices and soil types. Such richness, however, does not necessarily mean that artificial inoculation of Azospirillum is not required in Bihar soils as 92% of Azospirillum isolates (50 isolates) were poor in nitrogen-fixing ability and 88% were poor on IAA production. Efficient strains of Azospirillum based on growth (three), acetylene reduction assay (three), IAA production (three), broad range of pH (two) and temperature tolerance were identified. The findings suggested that maize crop in Bihar should be inoculated in universal mode rather than site-specific mode
Recommended from our members
Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?
Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth
- …
