6 research outputs found

    Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome

    Get PDF
    Autonomic changes are often associated with the chronic fatigue syndrome (CFS), but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP) and heart rate (HR). In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w) brain MRI in 25 CFS subjects and 25 normal controls (NC). Steady state BP (systolic, diastolic and pulse pressure) and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1) MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS), and (2) MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS. Significant CFS regressions were repeated controlling for anxiety and depression (A&D). Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations. We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015). Strong correlations were also detected in isolated NC regressions

    Hyperintense sensorimotor T1 spin echo MRI is associated with brainstem abnormality in chronic fatigue syndrome

    No full text
    We recruited 43 Chronic Fatigue Syndrome (CFS) subjects who met Fukuda criteria and 27 healthy controls and performed 3T MRI T1 and T2 weighted spin-echo (T1wSE and T2wSE) scans. T1wSE signal follows T1 relaxation rate (1/T1 relaxation time) and responds to myelin and iron (ferritin) concentrations. We performed MRI signal level group comparisons with SPM12. Spatial normalization after segmentation was performed using T2wSE scans and applied to the coregistered T1wSE scans. After global signal-level normalization of individual scans, the T1wSE group comparison detected decreased signal-levels in CFS in a brainstem region (cluster-based inference controlled for family wise error rate, PFWE= 0.002), and increased signal-levels in large bilateral clusters in sensorimotor cortex white matter (cluster PFWE < 0.0001). Moreover, the brainstem T1wSE values were negatively correlated with the sensorimotor values for both CFS (R2 = 0.31, P = 0.00007) and healthy controls (R2 = 0.34, P = 0.0009), and the regressions were co-linear. This relationship, previously unreported in either healthy controls or CFS, in view of known thalamic projection-fibre plasticity, suggests brainstem conduction deficits in CFS may stimulate the upregulation of myelin in the sensorimotor cortex to maintain brainstem – sensorimotor connectivity. VBM did not find group differences in regional grey matter or white matter volumes. We argued that increased T1wSE observed in sensorimotor WM in CFS indicates increased myelination which is a regulatory response to deficits in the brainstem although the causality cannot be tested in this study. Altered brainstem myelin may have broad consequences for cerebral function and should be a focus of future research. Keywords: Chronic Fatigue Syndrome, Brainstem, Motor, Sensorimotor, T1wSE, Myelin, Upregulatio

    Brain function characteristics of chronic fatigue syndrome: A task fMRI study

    Get PDF
    The mechanism underlying neurological dysfunction in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is yet to be established. This study investigated the temporal complexity of blood oxygenation level dependent (BOLD) changes in response to the Stroop task in CFS patients.43 CFS patients (47.4 ± 11.8 yrs) and 26 normal controls (NCs, 43.4 ± 13.9 yrs) were included in this study. Their mental component summary (MCS) and physical component summary (PCS) from the 36-item Short Form Health Survey (SF-36) questionnaire were recorded. Their Stroop colour-word task performance was measured by accuracy and response time (RT). The BOLD changes associated with the Stroop task were evaluated using a 2-level general linear model approach. The temporal complexity of the BOLD responses, a measure of information capacity and thus adaptability to a challenging environment, in each activated region was measured by sample entropy (SampEn).The CFS patients showed significantly longer RTs than the NCs (P < 0.05) but no significant difference in accuracy. One sample t-tests for the two groups (Family wise error adjusted PFWE < 0.05) showed more BOLD activation regions in the CFS, although a two sample group comparison did not show significant difference. BOLD SampEns in ten regions were significantly lower (FDR-q < 0.05) in CFS patients. BOLD SampEns in 15 regions were significantly associated with PCS (FDR-q < 0.05) and in 9 regions were associated with MCS (FDR-q < 0.05) across all subjects. SampEn of the BOLD signal in the medioventral occipital cortex could explain 40% and 31% of the variance in the SF-36 PCS and MCS scores, and those in the precentral gyrus could explain an additional 16% and 7% across all subjects.This is the first study to investigate BOLD signal SampEn in response to tasks in CFS. The results suggest the brain responds differently to a cognitive challenge in patients with CFS, with recruitment of wider regions to compensate for lower information capacity. Keywords: Chronic fatigue syndrome, fMRI, Sample entropy, Stroop task, Event related fMR
    corecore