1,255 research outputs found

    TGF-β signaling links E-cadherin loss to suppression of nucleotide excision repair.

    Get PDF
    E-cadherin is a cell adhesion molecule best known for its function in suppressing tumor progression and metastasis. Here we show that E-cadherin promotes nucleotide excision repair through positively regulating the expression of xeroderma pigmentosum complementation group C (XPC) and DNA damage-binding protein 1 (DDB1). Loss of E-cadherin activates the E2F4 and p130/107 transcription repressor complexes to suppress the transcription of both XPC and DDB1 through activating the transforming growth factor-β (TGF-β) pathway. Adding XPC or DDB1, or inhibiting the TGF-β pathway, increases the repair of ultraviolet (UV)-induced DNA damage in E-cadherin-inhibited cells. In the mouse skin and skin tumors, UVB radiation downregulates E-cadherin. In sun-associated premalignant and malignant skin neoplasia, E-cadherin is downregulated in association with reduced XPC and DDB1 levels. These findings demonstrate a crucial role of E-cadherin in efficient DNA repair of UV-induced DNA damage, identify a new link between epithelial adhesion and DNA repair and suggest a mechanistic link of early E-cadherin loss in tumor initiation

    Transforming growth factor-β and breast cancer: Mammary gland development

    Get PDF
    Transforming growth factor (TGF)-β(1) is a pluripotent cytokine that profoundly inhibits epithelial proliferation, induces apoptosis, and influences morphogenesis by mediating extracellular matrix deposition and remodeling. The physiologic roles of the action of TGF-β in mammary gland, indeed in most tissues, are poorly understood. In order to understand the actions of TGF-β, we need to take into account the complexity of its effects on different cell types and the influence of context on cellular responses. This task is further compounded by multiple mechanisms for regulating TGF-β transcription, translation, and activity. One of the most significant factors that obscures the action of TGF-β is that it is secreted as a stable latent complex, which consists of the 24-kDa cytokine and the 80-kDa dimer of its prepro region, called latency-associated peptide. Latency imposes a critical restraint on TGF-β activity that is often overlooked.The extracellular process known as activation, in which TGF-β is released from the latent complex, is emphasized in the present discussion of the role of TGF-β in mammary gland development. Definition of the spatial and temporal patterns of latent TGF-β activation in situ is essential for understanding the specific roles that TGF-β plays during mammary gland development, proliferation, and morphogenesis

    The convergence of radiation and immunogenic cell death signaling pathways.

    Get PDF
    Ionizing radiation (IR) triggers programmed cell death in tumor cells through a variety of highly regulated processes. Radiation-induced tumor cell death has been studied extensively in vitro and is widely attributed to multiple distinct mechanisms, including apoptosis, necrosis, mitotic catastrophe (MC), autophagy, and senescence, which may occur concurrently. When considering tumor cell death in the context of an organism, an emerging body of evidence suggests there is a reciprocal relationship in which radiation stimulates the immune system, which in turn contributes to tumor cell kill. As a result, traditional measurements of radiation-induced tumor cell death, in vitro, fail to represent the extent of clinically observed responses, including reductions in loco-regional failure rates and improvements in metastases free and overall survival. Hence, understanding the immunological responses to the type of radiation-induced cell death is critical. In this review, the mechanisms of radiation-induced tumor cell death are described, with particular focus on immunogenic cell death (ICD). Strategies combining radiotherapy with specific chemotherapies or immunotherapies capable of inducing a repertoire of cancer specific immunogens might potentiate tumor control not only by enhancing cell kill but also through the induction of a successful anti-tumor vaccination that improves patient survival

    New highlights on stroma–epithelial interactions in breast cancer

    Get PDF
    Although the stroma in which carcinomas arise has been previously regarded as a bystander to the clonal expansion and acquisition of malignant characteristics of tumor cells, it is now generally acknowledged that stromal changes are required for the establishment of cancer. In the present article, we discuss three recent publications that highlight the complex role the stroma has during the development of cancer and the potential for targeting the stroma by therapeutic approaches

    Mina Bissell: Context is everything

    Get PDF
    Bissell remains as passionate about science as ever

    Dual inhibition of TGF-β and PD-L1: a novel approach to cancer treatment

    Get PDF
    Immune checkpoint inhibitor; Tumor microenvironmentInhibidor del punto de control inmunitario; Microambiente tumoralInhibidor del punt de control immunitari; Microambient tumoralTransforming growth factor-β (TGF-β) and programmed death ligand 1 (PD-L1) initiate signaling pathways with complementary, nonredundant immunosuppressive functions in the tumor microenvironment (TME). In the TME, dysregulated TGF-β signaling suppresses antitumor immunity and promotes cancer fibrosis, epithelial-to-mesenchymal transition, and angiogenesis. Meanwhile, PD-L1 expression inactivates cytotoxic T cells and restricts immunosurveillance in the TME. Anti-PD-L1 therapies have been approved for the treatment of various cancers, but TGF-β signaling in the TME is associated with resistance to these therapies. In this review, we discuss the importance of the TGF-β and PD-L1 pathways in cancer, as well as clinical strategies using combination therapies that block these pathways separately or approaches with dual-targeting agents (bispecific and bifunctional immunotherapies) that may block them simultaneously. Currently, the furthest developed dual-targeting agent is bintrafusp alfa. This drug is a first-in-class bifunctional fusion protein that consists of the extracellular domain of the TGF-βRII receptor (a TGF-β ‘trap’) fused to a human immunoglobulin G1 (IgG1) monoclonal antibody blocking PD-L1. Given the immunosuppressive effects of the TGF-β and PD-L1 pathways within the TME, colocalized and simultaneous inhibition of these pathways may potentially improve clinical activity and reduce toxicity.This manuscript was funded by the healthcare business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: 10.13039/100009945), and was previously part of an alliance between the healthcare business of Merck KGaA, Darmstadt, Germany, and GlaxoSmithKline. Medical writing support was provided by Spencer Hughes of ClinicalThinking, Inc., which was also funded by the healthcare business of Merck KGaA, Darmstadt, Germany, and GlaxoSmithKline in accordance with Good Publication Practice guidelines (http://www.ismpp.org/gpp3). This manuscript was funded in part by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, and by a Cooperative Research and Development Agreement between the National Cancer Institute and EMD Serono, Billerica, MA, USA (CrossRef Funder ID:10.13039/100004755)
    corecore