84 research outputs found

    Effects of environment and stress concentration factor on Ti-6Al-4V specimens subjected to quasi-static loading

    Get PDF
    Abstract The bimodal titanium alloy Ti-6Al-4V is a well-known high strength-to-mass ratio material in different engineering sectors. Furthermore, the rapid oxidation of the surface protects the base material from the interaction with a wide spectrum of corrosive environments. However, the presence of surface defects and the mechanical loading may compromise the effectiveness of the oxide film. Quasi-static loading tests were carried out on different smooth and notched Ti-6Al-4V specimens in order to analyze the role of environment and stress concentration factor

    Treatment with fibrates is associated with higher LAL activity in dyslipidemic patients

    Get PDF
    Lysosomal acid lipase (LAL) is responsible for the hydrolysis of cholesteryl esters (CE) and triglycerides (TG) within the lysosomes; generated cholesterol and free fatty acids (FFA) are released in the cytosol where they can regulate their own synthesis and metabolism. When LAL is not active, as in case of genetic mutations, CE and TG accumulate in the lysosomal compartment, while the lack of release of cholesterol and FFA in the cytosol leads to an upregulation of their synthesis. Thus, LAL plays a central role in the intracellular homeostasis of lipids. Since there are no indications about the effect of different lipid-lowering agents on LAL activity, aim of the study was to address the relationship between LAL activity and the type of lipid-lowering therapy in a cohort of dyslipidemic patients. LAL activity was measured on dried blood spot from 120 patients with hypercholesterolemia or mixed dyslipidemia and was negatively correlated to LDL-cholesterol levels. Among enrolled patients, ninety-one were taking one or more lipid-lowering drugs, as statins, fibrates, ezetimibe and omega-3 polyunsaturated fatty acids. When patients were stratified according to the type of lipid-lowering treatment, i.e. untreated, taking statins or taking fibrates, LAL activity was significantly higher in those with fibrates, even after adjustment for sex, age, BMI, lipid parameters, liver function, metabolic syndrome, diabetes and statin use. In a subset of patients tested after 3 months of treatment with micronized fenofibrate, LAL activity raised by 21%; the increase was negatively correlated with baseline LAL activity. Thus, the use of fibrates is independently associated with higher LAL activity in dyslipidemic patients, suggesting that the positive effects of PPAR-\u3b1 activation on cellular and systemic lipid homeostasis can also include an improved LAL activity

    Pentraxin 3 deficiency protects from the metabolic inflammation associated to diet-induced obesity

    Get PDF
    Aims: Low-grade chronic inflammation characterizes obesity and metabolic syndrome. Here, we aim at investigating the impact of the acute-phase protein long pentraxin 3 (PTX3) on the immune-inflammatory response occurring during diet-induced obesity. Methods and results: PTX3 deficiency in mice fed a high-fat diet for 20 weeks protects from weight gain and adipose tissue deposition in visceral and subcutaneous depots. This effect is not related to changes in glucose homeostasis and lipid metabolism but is associated with an improved immune cell phenotype in the adipose tissue of Ptx3 deficient animals, which is characterized by M2-macrophages polarization and increased angiogenesis. These findings are recapitulated in humans where carriers of a PTX3 haplotype (PTX3 h2/h2 haplotype), resulting in lower PTX3 plasma levels, presented with a reduced prevalence of obesity and decreased abdominal adiposity compared with non-carriers. Conclusion: Our results support a critical role for PTX3 in the onset of obesity by promoting inflammation and limiting adipose tissue vascularization and delineate PTX3 targeting as a valuable strategy for the treatment of adipose tissue-associated inflammatory response

    PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor

    Get PDF
    Aims PCSK9 loss of function genetic variants are associated with lower low-density lipoprotein cholesterol but also with higher plasma glucose levels and increased risk of Type 2 diabetes mellitus. Here, we investigated the molecular mechanisms underlying this association. Methods and results Pcsk9 KO, WT, Pcsk9/Ldlr double KO (DKO), Ldlr KO, albumin AlbCre+/Pcsk9LoxP/LoxP (liver-selective Pcsk9 knock-out mice), and AlbCre-/Pcsk9LoxP/LoxP mice were used. GTT, ITT, insulin and C-peptide plasma levels, pancreas morphology, and cholesterol accumulation in pancreatic islets were studied in the different animal models. Glucose clearance was significantly impaired in Pcsk9 KO mice fed with a standard or a high-fat diet for 20\u2009weeks compared with WT animals; insulin sensitivity, however, was not affected. A detailed analysis of pancreas morphology of Pcsk9 KO mice vs. controls revealed larger islets with increased accumulation of cholesteryl esters, paralleled by increased insulin intracellular levels and decreased plasma insulin, and C-peptide levels. This phenotype was completely reverted in Pcsk9/Ldlr DKO mice implying the low-density lipoprotein receptor (LDLR) as the proprotein convertase subtilisin/kexin Type 9 (PCSK9) target responsible for the phenotype observed. Further studies in albumin AlbCre+/Pcsk9LoxP/LoxP mice, which lack detectable circulating PCSK9, also showed a complete recovery of the phenotype, thus indicating that circulating, liver-derived PCSK9, the principal target of monoclonal antibodies, does not impact beta-cell function and insulin secretion. Conclusion PCSK9 critically controls LDLR expression in pancreas perhaps contributing to the maintenance of a proper physiological balance to limit cholesterol overload in beta cells. This effect is independent of circulating PCSK9 and is probably related to locally produced PCSK9

    Impact of metabolic disorders on the structural, functional, and immunological integrity of the blood-brain barrier: Therapeutic avenues

    Get PDF
    : Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases
    • …
    corecore