159 research outputs found

    On the nature of tone

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Linguistics and Philosophy, 1990.Includes bibliographical references (leaves 327-337).by Zhiming Bao.Ph.D

    Idealizing Tauc Plot for Accurate Bandgap Determination of Semiconductor with UV-Vis: A Case Study for Cubic Boron Arsenide

    Full text link
    The Tauc plot method is widely used to determine the bandgap of semiconductors via UV-visible optical spectroscopy due to its simplicity and perceived accuracy. However, the actual Tauc plot often exhibits significant baseline absorption below the expected bandgap, leading to discrepancies in the calculated bandgap depending on whether the linear fit is extrapolated to zero or non-zero baseline. In this study, we show that both extrapolation methods can produce significant errors by simulating Tauc plots with varying levels of baseline absorption. To address this issue, we propose a new method that involves idealizing the absorption spectrum by removing its baseline before constructing the Tauc plot. Experimental verification of this method using a gallium phosphide (GaP) wafer with intentionally introduced baseline absorptions shows promising results. Furthermore, we apply this new method to cubic boron arsenide (c-BAs) and resolve discrepancies in c-BAs bandgap values reported by different groups, obtaining a converging bandgap of 1.835 eV based on both previous and new transmission spectra. The method is applicable to both indirect and direct bandgap semiconductors, regardless of whether the absorption spectrum is measured via transmission or diffuse reflectance, will become essential to obtain accurate values of their bandgaps

    Photoacoustic Identification of Laser-induced Microbubbles as Light Scattering Centers for Optical Limiting in Liquid Suspension of Graphene Nanosheets

    Full text link
    Liquid suspensions of carbon nanotubes, graphene and transition metal dichalcogenides have exhibited excellent performance in optical limiting. However, the underlying mechanism has remained elusive and is generally ascribed to their superior nonlinear optical properties such as nonlinear absorption or nonlinear scattering. Using graphene as an example, we show that photo-thermal microbubbles are responsible for the optical limiting as strong light scattering centers: graphene sheets absorb incident light and become heated up above the boiling point of water, resulting in vapor and microbubble generation. This conclusion is based on direct observation of bubbles above the laser beam as well as a strong correlation between laser-induced ultrasound and optical limiting. In-situ Raman scattering of graphene further confirms that the temperature of graphene under laser pulses rises above the boiling point of water but still remains too low to vaporize graphene and create graphene plasma bubbles. Photo-thermal bubble scattering is not a nonlinear optical process and requires very low laser intensity. This understanding helps us to design more efficient optical limiting materials and understand the intrinsic nonlinear optical properties of nanomaterials

    Theory and Experiments of Pressure-Tunable Broadband Light Emission from Self-Trapped Excitons in Metal Halide Crystals

    Full text link
    Hydrostatic pressure has been commonly applied to tune broadband light emissions from self-trapped excitons (STE) in perovskites for producing white light and study of basic electron-phonon interactions. However, a general theory is still lacking to understand pressure-driven evolution of STE emissions. In this work we first identify a theoretical model that predicts the effect of hydrostatic pressure on STE emission spectrum, we then report the observation of extremely broadband photoluminescence emission and its wide pressure spectral tuning in 2D indirect bandgap CsPb2Br5 crystals. An excellent agreement is found between the theory and experiment on the peculiar experimental observation of STE emission with a nearly constant spectral bandwidth but linearly increasing energy with pressure below 2 GPa. Further analysis by the theory and experiment under higher pressure reveals that two types of STE are involved and respond differently to external pressure. We subsequently survey published STE emissions and discovered that most of them show a spectral blue-shift under pressure, as predicted by the theory. The identification of an appropriate theoretical model and its application to STE emission through the coordinate configuration diagram paves the way for engineering the STE emission and basic understanding of electron-phonon interaction

    Linguistics

    Get PDF
    Contains table of contents for Section 4, an introduction and abstracts on eight doctoral dissertations

    Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting

    Get PDF
    Developing stable and efficient bifunctional catalysts for overall water splitting into hydrogen and oxygen is a critical step in the realization of several clean-energy technologies. Here we report a robust and highly active electrocatalyst that is constructed by deposition of the ternary metal phosphide FeMnP onto graphene-protected nickel foam by metal-organic chemical vapor deposition from a single source precursor. FeMnP exhibits high electrocatalytic activity toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Utilizing FeMnP/GNF as both the anode and the cathode for overall water splitting, a current density of 10 mA cm−2 is achieved at a cell voltage of as low as 1.55 V with excellent stability. Complementary density functional theory (DFT) calculations suggest that facets exposing both Fe and Mn sites are necessary to achieve high HER activity. The present work provides a facile strategy for fabricating highly efficient electrocatalysts from earth-abundant materials for overall water splitting
    • …
    corecore