1,266 research outputs found

    Analytic Solutions for the Evolution of Radiative Supernova Remnants

    Full text link
    We present the general analytic solution for the evolution of radiative supernova remnants in a uniform interstellar medium, under thin-shell approximation. This approximation is shown to be very accurate approach to this task. For a given set of parameters, our solution closely matches the results of numerical models, showing a transient in which the deceleration parameter reaches a maximum value of 0.33, followed by a slow convergence to the asymptotic value 2/7. Oort (1951) and McKee and Ostriker (1977) analytic solutions are discussed, as special cases of the general solution we have found.Comment: 5 pages, 1 figure, Astronomy and Astrophysics, accepte

    Cosmic Ray acceleration and Balmer emission from SNR 0509-67.5

    Full text link
    Context: Observation of Balmer lines from the region around the forward shock of supernova remnants may provide precious information on the shock dynamics and on the efficiency of particle acceleration at the shock. Aims: We calculate the Balmer line emission and the shape of the broad Balmer line for parameter values suitable for SNR 0509-67.5, as a function of the cosmic ray acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer line emission to infer the cosmic ray acceleration efficiency in this remnant. Methods: We use the recently developed non-linear theory of diffusive shock acceleration in the presence of neutrals. The semi-analytical approach that we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of both accelerated particles and turbulent magnetic field on the shock, and all channels of interaction between neutral atoms and background plasma that change the shock dynamics. Results: We achieve a quantitative assessment of the CR acceleration efficiency in SNR 0509-67.5 as a function of the shock velocity and different levels of electron-proton thermalization in the shock region. If the shock moves faster than ~4500 km/s, one can conclude that particle acceleration must be taking place with efficiency of several tens of percent. For lower shock velocity the evidence for particle acceleration becomes less clear because of the uncertainty in the electron-ion equilibration downstream. We also discuss the role of future measurements of the narrow Balmer line.Comment: 7 pages, 5 figure. Accepted for publication in Astronomy & Astrophysic

    Broad Balmer line emission and cosmic ray acceleration efficiency in supernova remnant shocks

    Full text link
    Balmer emission may be a powerful diagnostic tool to test the paradigm of cosmic ray (CR) acceleration in young supernova remnant (SNR) shocks. The width of the broad Balmer line is a direct indicator of the downstream plasma temperature. In case of efficient particle acceleration an appreciable fraction of the total kinetic energy of the plasma is channeled into CRs, therefore the downstream temperature decreases and so does the broad Balmer line width. This width also depends on the level of thermal equilibration between ions and neutral hydrogen atoms in the downstream. Since in general in young SNR shocks only a few charge exchange (CE) reactions occur before ionization, equilibration between ions and neutrals is not reached, and a kinetic description of the neutrals is required in order to properly compute Balmer emission. We provide a method for the calculation of Balmer emission using a self-consistent description of the shock structure in the presence of neutrals and CRs. We use a recently developed semi-analytical approach, where neutral particles, ionized plasma, accelerated particles and magnetic fields are all coupled together through the mass, momentum and energy flux conservation equations. The distribution of neutrals is obtained from the full Boltzmann equation in velocity space, coupled to Maxwellian ions through ionization and CE processes. The computation is also improved with respect to previous work thanks to a better approximation for the atomic interaction rates. We find that for shock speeds >2500km/s the distribution of broad neutrals never approaches a Maxwellian and its moments differ from those of the ionized component. These differences reflect into a smaller FWHM than predicted in previous calculations, where thermalization was assumed. The method presented here provides a realistic estimate of particle acceleration efficiency in Balmer dominated shocks.Comment: 6 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    Cosmic Ray acceleration and Balmer emission from RCW 86 (G315.4-2.3)

    Get PDF
    Context. Observation of Balmer lines from the region around the forward shock of supernova remnants (SNR) may provide valuable information on the shock dynamics and the efficiency of particle acceleration at the shock. Aims. We calculated the Balmer line emission and the shape of the broad Balmer line for parameter values suitable for SNR RCW 86 (G315.4-2.3) as a function of the cosmic-ray (CR) acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer-line emission to infer the CR acceleration efficiency in this remnant. Methods. We used the recently developed nonlinear theory of diffusive shock-acceleration in the presence of neutrals. The semianalytical approach we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of accelerated particles and the turbulent magnetic field on the shock, and all channels of interaction between neutral hydrogen atoms and background ions that are relevant for the shock dynamics. Results. We derive the CR acceleration efficiency in the SNR RCW 86 from the Balmer emission. Since our calculation used recent measurements of the shock proper motion, the results depend on the assumed distance to Earth. For a distance of 2 kpc the measured width of the broad Balmer line is compatible with the absence of CR acceleration. For a distance of 2.5 kpc, which is a widely used value in current literature, a CR acceleration efficiency of 5-30% is obtained, depending upon the electron-ion equilibration and the ionization fraction upstream of the shock. By combining information on Balmer emission with the measured value of the downstream electron temperature, we constrain the CR acceleration efficiency to be ~20%.Comment: 7 pages, 6 figures. Accepted for publication in A&A (minor changes to match the published version

    Modeling the effect of small-scale magnetic turbulence on the X-ray properties of Pulsar Wind Nebulae

    Get PDF
    Pulsar Wind Nebulae (PWNe) constitute an ideal astrophysical environment to test our current understanding of relativistic plasma processes. It is well known that magnetic fields play a crucial role in their dynamics and emission properties. At present, one of the main issues concerns the level of magnetic turbulence present in these systems, which in the absence of space resolved X-ray polarization measures cannot be directly constrained. In this work we investigate, for the first time using simulated synchrotron maps, the effect of a small scale fluctuating component of the magnetic field on the emission properties in X-ray. We illustrate how to include the effects of a turbulent component in standard emission models for PWNe, and which consequences are expected in terms of net emissivity and depolarization, showing that the X-ray surface brightness maps can provide already some rough constraints. We then apply our analysis to the Crab and Vela nebulae and, by comparing our model with Chandra and Vela data, we found that the typical energies in the turbulent component of the magnetic field are about 1.5 to 3 times the one in the ordered field.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    The Supernova Remnant G11.2-0.3 and its central Pulsar

    Get PDF
    The plerion inside the composite Supernova Remnant G11.2-0.3 appears to be dominated by the magnetic field to an extent unprecedented among well known cases. We discuss its evolution as determined by a central pulsar and the interaction with the surrounding thermal remnant, which in turn interacts with the ambient medium. We find that a plausible scenario exists, where all the observations can be reproduced with rather typical values for the parameters of the system; we also obtain the most likely period for the still undetected pulsar.Comment: 10 pages, to be published on ApJ Letters. Formatted using AASTe

    Modeling Nonaxisymmetric Bow Shocks: Solution Method and Exact Analytic Solutions

    Get PDF
    A new solution method is presented for steady-state, momentum-conserving, non-axisymmetric bow shocks and colliding winds in the thin-shell limit. This is a generalization of previous formulations to include a density gradient in the pre-shock ambient medium, as well as anisotropy in the pre-shock wind. For cases where the wind is unaccelerated, the formalism yields exact, analytic solutions. Solutions are presented for two bow shock cases: (1) that due to a star moving supersonically with respect to an ambient medium with a density gradient perpendicular to the stellar velocity, and (2) that due to a star with a misaligned, axisymmetric wind moving in a uniform medium. It is also shown under quite general circumstances that the total rate of energy thermalization in the bow shock is independent of the details of the wind asymmetry, including the orientation of the non-axisymmetric driving wind, provided the wind is non-accelerating and point-symmetric. A typical feature of the solutions is that the region near the standoff point is tilted, so that the star does not lie along the bisector of a parabolic fit to the standoff region. The principal use of this work is to infer the origin of bow shock asymmetries, whether due to the wind or ambient medium, or both.Comment: 26 pages and 6 figures accepted to ap
    • …
    corecore