26 research outputs found

    Waste to energy technologies for solid waste management a case study of Uganda

    Get PDF
    Municipal solid waste management is one of the major environmental problems of developing countries. Investments in solid waste management would not only translate into jobs and income but also a cleaner environment. Over years a number of solid waste management technologies have been carried out in many developing parts of the world. Some were successful in generating lasting impacts on the improvement of solid waste management, however, many technologies failed due to unsustainability. This is partly attributed to differences in waste characteristics between developed countries and the less developed countries and the resource constraints in less developed countries. On the other hand, less developed countries are also known for being energy deprived and thus energy recovery as sustainable waste management technology is advocated for in these countries. This paper seeks to review and assess the energy recovery potential from the various sustainable waste technologies in Uganda. The advantages attached to such technologies will be assessed and evaluated. In a further step, a comparative analysis with traditional energy sources like hydro-electricity power and petroleum products powered generators is also presented and discussed. This study concludes that renewable energy sources present Uganda with a rare opportunity to elevate millions out of energy poverty

    Enhancement of biogas potential of primary sludge by co-digestion with cow manure and brewery sludge

    Get PDF
    Anaerobic digestion (AD) has long been used to treat different types of organic wastes especially in the developed world. However, organic wastes are still more often considered as a waste instead of a resource in the developing world, which contributes to environmental pollution arising from their disposal. This study has been conducted at Bugolobi Sewage Treatment Plant (BSTP), where two organic wastes, cow manure and brewery sludge were co-digested with primary sludge in different proportions. This study was done in lab-scale reactors at mesophilic temperature and sludge retention time of 20 d. The main objective was to evaluate the biodegradability of primary sludge generated at BSTP, Kampala, Uganda and enhance its ability of biogas production. When the brewery sludge was added to primary STP sludge at all proportions, the biogas production rate increased by a factor of 3. This was significantly (p<0.001) higher than observed gas yield (337 +/- 18 mL/(L.d)) in the control treatment containing (only STP sludge). Co-digesting STP sludge with cow manure did not show different results compared to the control treatment. In conclusion, Bugolobi STP sludge is poorly anaerobically degradable with low biogas production but co-digestion with brewery sludge enhanced the biogas production rate, while co-digestion with cow manure was not beneficial

    A two-stage decentralised system combining high rate activated sludge (HRAS) with alternating charcoal filters (ACF) for treating small community sewage to reusable standards for agriculture

    Get PDF
    Water scarcity increasingly drives wastewater recovery. Campaigns towards re-use of wastewater are not very common in Africa among other factors, due to a lack of efficient and cost-effective technology to treat wastewater to re-usable standards. In this study, two treatment systems, a high rate activated sludge (HRAS) system and alternating charcoal filters (ACF) are combined and used to treat wastewater to standards fit for reuse in agriculture. The charcoal can upon saturation be dried and used as fuel. Two different ACF lines were used in parallel after the HRAS: ACF1 with a residence time of 2.5 h and ACF2 with residence time of 5 h. Results show no significant difference (α = 0.05) in the performance of the two filter lines, hence ACF1 with a higher flow rate was considered as optimal. The HRAS effectively removed up to 65% of total suspended solids (TSS) and 59% of chemical oxygen demand (COD), while ACF1 removed up to 70% TSS and 58% COD. The combined treatment system of HRAS and ACF1 effectively decreased TSS and COD on average by 89 and 83%, respectively. Total ammonium nitrogen (TAN) and total phosphates (TP) were largely retained in the effluent with average removal percentages of 19.5 and 27.5%, respectively, encouraging reuse for plant growth.Key words: A-stage, sustainable wastewater treatment, resource recovery, developing countries, water reuse, nutrient management, agriculture

    Modeling sludge accumulation rates in lined pit latrines in slum areas of Kampala City, Uganda

    Get PDF
    Disposal of faecal sludge particularly in slum areas is a difficult undertaking given the lack of space and resources. Inaccurate prediction of sludge accumulation rates (SAR) in pit latrines leads to unplanned pit latrine emptying. Given that the users and owners cannot afford the conventional emptying techniques frequently, inappropriate methods such as open defecation and emptying into storm drainages are employed which consequently contribute to environmental and health-related challenges. The main objective of this study was to develop a predictive model for sludge accumulation rates in lined pit latrines in slum areas of Kampala so as to guide routine management of pit latrines. This mathematical model was developed using a mass balance approach with a sample space of 55 lined pits. The developed model gave an average sludge accumulation rate of 81±25 litres/person/year with an efficiency of 0.52 and adjusted R2 value of 0.50. The model was found to be sufficient and most suited for rental and public pit latrines given their bigger percentage in the slums. Further studies should include geo-physical characterization of soil and drainage of pit latrine sites so as to improve model accuracy.Keywords: Faecal, sludge accumulation rates, slum areas, lined pit latrine

    Transforming Corn Stover to Useful Transport Fuel Blends in Resource-Limited Settings

    Get PDF
    Development of local technologies is crucial to the sustainable energy agenda in resource-limited countries and the world. Strengthening local green technologies and promoting local utilization will reduce carbon emissions that could be generated during transportation and delivery of green products from one country to another. In this paper we developed bio-oil/diesel blends using a low-tech pyrolysis system designed for smallholder farmers in developing countries and tested their appropriateness for diesel engines using standard ASTM methods. Corn stover retrieved from smallholder farmers in Gayaza, Uganda were pyrolyzed in a batch rocket stove reactor at 350 °C and liquid bio-oil harvested. Bio-oil chemical composition was analyzed by Gas Chromatography equipped with Flame Ionization Detector (GC-FID). Bio-oil/diesel emulsions in ternary concentrations 5%, 10% and 20% bio-oil weight were developed with 1% concentration of sorbitan monolaurate as an emulsifier. The bio-oil/diesel emulsions and distillates had property ranges: specific gravities at 15 °C 827.4–830.7 kg m−3, specific gravities at 20 °C 823.9–827.2 kg m−3, kinematic viscosities at 40 °C 3.01–3.22 mm2/s, initial boiling points 140–160 °C, final boiling points 354–368 °C, and calculated cetane indexes 56.80–57.63. These properties of the bio-oil/diesel blends and their distillates compare well with standard transportation diesel fuel. The emulsion distillates meet the standard requirements for automotive diesel in East Africa

    Contextual investigation of factors affecting sludge accumulation rates in lined pit latrines within Kampala slum areas, Uganda

    Get PDF
    Pit latrines in slums areas of Uganda fill up faster than might be expected from some estimates owing to inappropriate use and failure to consider critical factors affecting sludge accumulation rates at the planning, design and construction stages. This study sought to investigate factors affecting filling rates of lined pit latrines in slum areas of Kampala with the goal of contributing to accurate planning, design, construction, emptying and overall maintenance. Fifty-five pit latrines were selected from the five divisions of Kampala city using stratified random sampling. Data collected included: number of users, frequency of emptying, years taken since last emptying, type of non-faecal materials deposited, cross-sectional dimensions of the pit, rate of sludge degradation and geo-physical factors of pit location. Methods used were: field surveys, questionnaires and key informant interviews plus on-site depth measurement. Mass loss tests to investigate the rate of sludge degradation were carried out in the laboratory at moisture content levels similar to those in pit latrines. Sludge accumulation rates were calculated using volume of sludge in the pit, number of users and time taken since last emptying. Statistical analyses included correlation and one-way ANOVA. Results revealed that number of users and type of material deposited in the pit latrines, especially non-faecal matter, had a significant (p &lt; 0.05) effect on sludge accumulation rate. Public pit latrines with a higher number of users had lower sludge accumulation rates and this was attributed to greater degradation taking place and greater restriction on entry of non-faecal matter. The rate of sludge degradation was higher at 90–100% than 80–90% moisture content, due to better degradation conditions. Tighter restrictions on non-faecal material deposition into pit latrines are recommended to reduce filling rates of pit latrines in slum areas.Keywords: sludge accumulation rates, slum areas, faecal matter, degradation, lined pit latrine

    Improving Maize Shelling Operation Using Motorized Mobile Shellers: <em>A Step towards Reducing Postharvest Losses in Low Developing Countries</em>

    Get PDF
    Maize shelling is still a challenge in low developing countries with more efforts required to advance this operation. In Uganda, motorized immobile maize shellers have been fabricated locally to enhance the shelling operation. However, their performance has not elated the farmers. The unsatisfactory performance is a result of these shellers being fabricated by local artisan with finite understanding of the maize grain characteristics and operation factors to optimize maize shelling. In addition, farmers in these countries have a deficiency of power to operate the motorized maize shellers available. Transportation of these motorized maize shellers is also still a challenge and it imposes an extra cost to the farmers hence reducing their profits from maize growing. In this chapter, we reviewed maize shelling process in low developing countries particularly the categories of maize shelling, maize sheller design requirements, use of equations to design sheller parts, modification of the motorized maize shellers and case studies on the mobile maize shellers, comparing them with immobile maize shellers. The study concluded that on addition to other sheller performance attributes, motorized mobile maize shellers can solve transportation challenges associated with motorized immobile maize shellers

    Performance evaluation of an inflatable solar dryer for maize and the effect on product quality compared with direct sun drying

    Get PDF
    Maize is an important staple in Africa, which necessitates immediate drying to preserve the postharvest quality. The traditional drying of maize in the open sun is prone to adverse weather and extraneous contamination. In this study, the drying performance of an inflatable solar dryer (ISD) was compared to direct sun drying (DSD) in Gombe Town, Wakiso District (Uganda) by analysing the moisture content, yeasts, moulds, aflatoxin, and colour. The maximum temperature inside the ISD reached 63.7 °C and averaged 7 °C higher than the ambient temperature. Maize was dried using both methods to a moisture content below 14% after two days. In one of the received maize lots that was already heavily contaminated after harvest, drying with DSD and ISD reduced the aflatoxin content from 569.6 ÎŒg kg−1 to 345.5 ÎŒg kg−1 and 299.2 ÎŒg kg−1, respectively. Although the drying performance in terms of drying time and product quality regarding colour, yeast, and mould was similar for both drying methods, the advantage of ISD in reducing the risk of spoilage due to sudden rain is obvious. A strategy for the early detection of aflatoxins in maize is recommended to avoid contaminated maize in the food chain

    A short review on the potential of coffee husk gasification for sustainable energy in Uganda [version 1; referees: 2 approved]

    No full text
    Agricultural biomass is widely recognized as a clean and renewable energy source, with increasing potential to replace conventional fossil fuels in the energy market. Uganda, like other developing countries, has a high dependency (91%) on wood fuel, leading to environmental degradation. With a coffee production of 233 Metric Tonnes per annum, relating to 46.6 Mega Tonnes of coffee husks from processing, transforming these husks into syngas through gasification can contribute to resolving the existing energy challenges. The objective of this article is to briefly review the energy potential of coffee husks through gasification, and how the gasification process could increase energy recoveries for coffee farmers. Previous  findings indicate that the 46.6 Mega Tonnes per year of coffee husks generated in Uganda, with a heating value of 18.34 MJ/kg, is capable of generating 24 GWh of energy. This will address a 0.7% portion of the energy situation in Uganda, while protecting the environment
    corecore