952 research outputs found

    Hereditary sensory and autonomic neuropathy type IV and orthopaedic complications

    Get PDF
    SummaryHereditary sensory and autonomic neuropathy type IV (HSAN-IV) is a very rare autosomal recessive disorder characterized by recurrent episodes of unexplained fever, extensive anhidrosis, total insensitivity to pain, hypotonia, and mental retardation. The most frequent complications of this disease are corneal scarring, multiple fractures, joint deformities, osteomyelitis, and disabling self-mutilations. We reported the case of a 12-year-old boy. The goal was to discuss our decision-making and compare this case with cases described in the literature

    Idiopathic club foot treated with the Ponseti method. Clinical and sonographic evaluation of Achilles tendon tenotomy. A review of 221 club feet

    Get PDF
    SummaryThe Ponseti method applied to treating idiopathic club foot consists in placing successive corrective casts, possibly an Achilles tendon tenotomy, then derotation braces, a method that has proven its efficacy. This study compared 221 cases of club foot treated with this method between 2002 and 2007 divided into two groups, based on whether or not Achilles tendon tenotomy was performed. Assessment was both clinical and sonographic. We observed clear improvement of the results in the group that underwent Achilles tendon tenotomy and a significant difference in the rate of secondary surgery. The sonographic evaluation also showed improvement of the morphological results. We now systematically propose Achilles tendon tenotomy however severe club foot may be

    In-situ surface technique analyses and ex-situ characterization of Si1-xGex epilayers grown on Si(001)-2 ×1 by molecular beam epitaxy

    No full text
    Si1-xGex epilayers grown by Molecular Beam Epitaxy on Si(001) at 400 ○C have been analyzed in-situ by surface techniques such as X-ray and Ultraviolet Photoelectron Spectroscopies (XPS and UPS), Low Energy Electron Diffraction (LEED) and photoelectron diffraction (XPD). The Ge surface concentrations (x) obtained from the ratios of Ge and Si core level intensities are systematically higher than those obtained by the respective evaporation fluxes. This indicates a Ge enrichment in the first overlayers confirmed by Ge-like UPS valence band spectra. The structured crystallographic character of the epilayers is ascertained by LEED and XPD polar scans in the (100) plane since the Ge Auger LMM and the Si 2p XPD intensity patterns from the Si1-xGex epilayers are identical to those of the Si substrate. The residual stress in the epilayer is determined by ex-situ X-ray diffraction (XRD) which also allows, as Rutherford Back Scattering (RBS), Ge concentration determinations

    D-term inflation in non-minimal supergravity

    Get PDF
    D-term inflation is one of the most interesting and versatile models of inflation. It is possible to implement naturally D-term inflation within high energy physics, as for example SUSY GUTs, SUGRA, or string theories. D-term inflation avoids the η\eta-problem, while in its standard form it always ends with the formation of cosmic strings. Given the recent three-year WMAP data on the cosmic microwave background temperature anisotropies, we examine whether D-term inflation can be successfully implemented in non-minimal supergravity theories. We show that for all our choices of K\"ahler potential, there exists a parameter space for which the predictions of D-term inflation are in agreement with the measurements. The cosmic string contribution on the measured temperature anisotropies is always dominant, unless the superpotential coupling constant is fine tuned; a result already obtained for D-term inflation within minimal supergravity. In conclusion, cosmic strings and their r\^ole in the angular power spectrum cannot be easily hidden by just considering a non-flat K\"ahler geometry.Comment: 29 pages, 9 figures; minor changes to match publihed versio

    Cosmic Strings and Superstrings

    Full text link
    Cosmic strings are predicted by many field-theory models, and may have been formed at a symmetry-breaking transition early in the history of the universe, such as that associated with grand unification. They could have important cosmological effects. Scenarios suggested by fundamental string theory or M-theory, in particular the popular idea of brane inflation, also strongly suggest the appearance of similar structures. Here we review the reasons for postulating the existence of cosmic strings or superstrings, the various possible ways in which they might be detected observationally, and the special features that might discriminate between ordinary cosmic strings and superstrings.Comment: Minor errors corrected and some references added, 34 pages, 6 figure

    The 21 cm Signature of Shock Heated and Diffuse Cosmic String Wakes

    Full text link
    The analysis of the 21 cm signature of cosmic string wakes is extended in several ways. First we consider the constraints on GμG\mu from the absorption signal of shock heated wakes laid down much later than matter radiation equality. Secondly we analyze the signal of diffuse wake, that is those wakes in which there is a baryon overdensity but which have not shock heated. Finally we compare the size of these signals compared to the expected thermal noise per pixel which dominates over the background cosmic gas brightness temperature and find that the cosmic string signal will exceed the thermal noise of an individual pixel in the Square Kilometre Array for string tensions Gμ>2.5×108G\mu > 2.5 \times 10^{-8}.Comment: 10 pages, 4 figures, Appendix added, version published in JCA

    Cosmic string parameter constraints and model analysis using small scale Cosmic Microwave Background data

    Full text link
    We present a significant update of the constraints on the Abelian Higgs cosmic string tension by cosmic microwave background (CMB) data, enabled both by the use of new high-resolution CMB data from suborbital experiments as well as the latest results of the WMAP satellite, and by improved predictions for the impact of Abelian Higgs cosmic strings on the CMB power spectra. The new cosmic string spectra (presented in a previous work) were improved especially for small angular scales, through the use of larger Abelian Higgs string simulations and careful extrapolation. If Abelian Higgs strings are present then we find improved bounds on their contribution to the CMB anisotropies, f10< 0.095, and on their tension, G\mu< 0.57 x 10^-6, both at 95% confidence level using WMAP7 data; and f10 < 0.048 and G\mu < 0.42 x 10^-6 using all the CMB data. We also find that using all the CMB data, a scale invariant initial perturbation spectrum, ns=1, is now disfavoured at 2.4\sigma\ even if strings are present. A Bayesian model selection analysis no longer indicates a preference for strings.Comment: 8 pages, 3 figures; Minor corrections, matches published versio

    Seguro paramétrico como nova ferramenta para gerenciar o risco climático na cultura da soja.

    Get PDF
    corecore