235,596 research outputs found
The effect of bandwidth in scale-free network traffic
We model information traffic on scale-free networks by introducing the
bandwidth as the delivering ability of links. We focus on the effects of
bandwidth on the packet delivering ability of the traffic system to better
understand traffic dynamic in real network systems. Such ability can be
measured by a phase transition from free flow to congestion. Two cases of node
capacity C are considered, i.e., C=constant and C is proportional to the node's
degree. We figured out the decrease of the handling ability of the system
together with the movement of the optimal local routing coefficient ,
induced by the restriction of bandwidth. Interestingly, for low bandwidth, the
same optimal value of emerges for both cases of node capacity. We
investigate the number of packets of each node in the free flow state and
provide analytical explanations for the optimal value of . Average
packets traveling time is also studied. Our study may be useful for evaluating
the overall efficiency of networked traffic systems, and for allevating traffic
jam in such systems.Comment: 6 pages, 4 figure
Support and injective resolutions of complexes over commutative rings
Examples are given to show that the support of a complex of modules over a
commutative noetherian ring may not be read off the minimal semi-injective
resolution of the complex. The same examples also show that a localization of a
semi-injective complex need not be semi-injective.Comment: 5 pages; major revisions; to appear in Homology, Homotopy and
application
Matrix product state representation of non-Abelian quasiholes
We provide a detailed explanation of the formalism necessary to construct
matrix product states for non-Abelian quasiholes in fractional quantum Hall
model states. Our construction yields an efficient representation of the wave
functions with conformal-block normalization and monodromy, and complements the
matrix product state representation of fractional quantum Hall ground states.Comment: 14 pages, 2 figures; published versio
Notes on nonabelian (0,2) theories and dualities
In this paper we explore basic aspects of nonabelian (0,2) GLSM's in two
dimensions for unitary gauge groups, an arena that until recently has largely
been unexplored. We begin by discussing general aspects of (0,2) theories,
including checks of dynamical supersymmetry breaking, spectators and weak
coupling limits, and also build some toy models of (0,2) theories for bundles
on Grassmannians, which gives us an opportunity to relate physical anomalies
and trace conditions to mathematical properties. We apply these ideas to study
(0,2) theories on Pfaffians, applying recent perturbative constructions of
Pfaffians of Jockers et al. We discuss how existing dualities in (2,2)
nonabelian gauge theories have a simple mathematical understanding, and make
predictions for additional dualities in (2,2) and (0,2) gauge theories.
Finally, we outline how duality works in open strings in unitary gauge
theories, and also describe why, in general terms, we expect analogous
dualities in (0,2) theories to be comparatively rare.Comment: 93 pages, LaTeX; v2: typos fixe
Novelty and Collective Attention
The subject of collective attention is central to an information age where
millions of people are inundated with daily messages. It is thus of interest to
understand how attention to novel items propagates and eventually fades among
large populations. We have analyzed the dynamics of collective attention among
one million users of an interactive website -- \texttt{digg.com} -- devoted to
thousands of novel news stories. The observations can be described by a
dynamical model characterized by a single novelty factor. Our measurements
indicate that novelty within groups decays with a stretched-exponential law,
suggesting the existence of a natural time scale over which attention fades
Gradient design of metal hollow sphere (MHS) foams with density gradients
This is the post-print version of the final paper published in Composites Part B: Engineering. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Metal hollow sphere (MHS) structures with a density gradient have attracted increasing attention in the effort to pursue improved energy absorption properties. In this paper, dynamic crushing of MHS structures of different gradients are discussed, with the gradients being received by stacks of hollow spheres of the same external diameter but different wall thicknesses in the crushing direction. Based on the dynamic performance of MHS structures with uniform density, a crude semi-empirical model is developed for the design of MHS structures in terms of gradient selections for energy absorption and protection against impact. Following this, dynamic responses of density graded MHS foams are comparatively analyzed using explicit finite element simulation and the proposed formula. Results show that the simple semi-empirical model can predict the response of density gradient MHS foams and is ready-to-use in the gradient design of MHS structures.The National Science Foundation of China and the State Key Laboratory of Explosion Science
and Technology (Beijing Institute of Technology
- …
