55 research outputs found

    Human Immunodeficiency Virus (HIV) Infection and Use of Illicit Substances Promote Secretion of Semen Exosomes that Enhance Monocyte Adhesion and Induce Actin Reorganization and Chemotactic Migration

    Get PDF
    Semen exosomes (SE) from HIV-uninfected (HIV−) individuals potently inhibit HIV infection in vitro. However, morphological changes in target cells in response to SE have not been characterized or have the effect of HIV infection or the use of illicit substances, specifically psychostimulants, on the function of SE been elucidated. The objective of this study was to evaluate the effect of HIV infection, psychostimulant use, and both together on SE-mediated regulation of monocyte function. SE were isolated from semen of HIV− and HIV-infected (HIV+) antiretroviral therapy (ART)-naive participants who reported either using or not using psychostimulants. The SE samples were thus designated as HIV−Drug−, HIV−Drug+, HIV+Drug−, and HIV+Drug+. U937 monocytes were treated with different SEs and analyzed for changes in transcriptome, morphometrics, actin reorganization, adhesion, and chemotaxis. HIV infection and/or use of psychostimulants had minimal effects on the physical characteristics of SE. However, different SEs had diverse effects on the messenger RNA signature of monocytes and rapidly induced monocyte adhesion and spreading. SE from HIV infected or psychostimulants users but not HIV−Drug− SE, stimulated actin reorganization, leading to the formation of filopodia-like structures and membrane ruffles containing F-actin and vinculin that in some cases were colocalized. All SE stimulated monocyte chemotaxis to HIV secretome and activated the secretion of matrix metalloproteinases, a phenotype exacerbated by HIV infection and psychostimulant use. SE-directed regulation of cellular morphometrics and chemotaxis depended on the donor clinical status because HIV infection and psychostimulant use altered SE function. Although our inclusion criteria specified the use of cocaine, humans are poly-drug and alcohol users and our study participants used psychostimulants, marijuana, opiates, and alcohol. Thus, it is possible that the effects observed in this study may be due to one of these other substances or due to an interaction between different substances

    Neuroprotective Effect of Inhaled Nitric Oxide on Excitotoxic-Induced Brain Damage in Neonatal Rat

    Get PDF
    BACKGROUND: Inhaled nitric oxide (iNO) is one of the most promising therapies used in neonates. However, little information is known about its impact on the developing brain submitted to excitotoxic challenge. METHODOLOGY/PRINCIPAL FINDINGS: We investigated here the effect of iNO in a neonatal model of excitotoxic brain lesions. Rat pups and their dams were placed in a chamber containing 20 ppm NO during the first week of life. At postnatal day (P)5, rat pups were submitted to intracranial injection of glutamate agonists. At P10, rat pups exposed to iNO exhibited a significant decrease of lesion size in both the white matter and cortical plate compared to controls. Microglia activation and astrogliosis were found significantly decreased in NO-exposed animals. This neuroprotective effect was associated with a significant decrease of several glutamate receptor subunits expression at P5. iNO was associated with an early (P1) downregulation of pCREB/pAkt expression and induced an increase in pAkt protein concentration in response to excitotoxic challenge (P7). CONCLUSION: This study is the first describe and investigate the neuroprotective effect of iNO in neonatal excitotoxic-induced brain damage. This effect may be mediated through CREB pathway and subsequent modulation of glutamate receptor subunits expression

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Impaired growth in rural Gambian infants exposed to aflatoxin: a prospective cohort study

    Get PDF
    Background: Exposure to aflatoxin, a mycotoxin produced by fungi that commonly contaminates cereal crops across sub-Saharan Africa, has been associated with impaired child growth. We investigated the impact of aflatoxin exposure on the growth of Gambian infants from birth to two years of age, and the impact on insulin-like growth factor (IGF)-axis proteins. Methods: A subsample (N = 374) of infants from the Early Nutrition and Immune Development (ENID) trial (ISRCTN49285450) were included in this study. Aflatoxin-albumin adducts (AF-alb) were measured in blood collected from infants at 6, 12 and 18 months of age. IGF-1 and IGFBP-3 were measured in blood collected at 12 and 18 months. Anthropometric measurements taken at 6, 12, 18 and 24 months of age were converted to z-scores against the WHO reference. The relationship between aflatoxin exposure and growth was analysed using multi-level modelling. Results: Inverse relationships were observed between lnAF-alb and length-for-age (LAZ), weight-for-age (WAZ), and weight-for-length (WLZ) z-scores from 6 to 18 months of age (β = − 0·04, P = 0·015; β = − 0·05, P = 0.003; β = − 0·06, P = 0·007; respectively). There was an inverse relationship between lnAF-alb at 6 months and change in WLZ between 6 and 12 months (β = − 0·01; P = 0·013). LnAF-alb at 12 months was associated with changes in LAZ and infant length between 12 and 18 months of age (β = − 0·01, P = 0·003; β = − 0·003, P = 0·02; respectively). LnAF-alb at 6 months was associated with IGFBP-3 at 12 months (r = − 0·12; P = 0·043). Conclusions: This study found a small but significant effect of aflatoxin exposure on the growth of Gambian infants. This relationship is not apparently explained by aflatoxin induced changes in the IGF-axis
    corecore