343 research outputs found
Storage and evolution of mafic and intermediate alkaline magmas beneath ross Island, Antarctica
We present the results of phase equilibrium experiments carried out on basanite and phonotephrite lavas from Ross Island, Antarctica. Experiments were designed to reproduce the P-T-X-fO₂ conditions of deep and intermediate magma storage and to place constraints on the differentiation of each of the two predominant lava suites on the island, which are thought to be derived from a common parent melt. The Erebus Lineage (EL) consists of lava erupted from the Erebus summit and the Dry Valley Drilling Project (DVDP) lineage is represented by lavas sampled by drill core on Hut Point Peninsula. Experiments were performed in internally heated pressure vessels over a range of temperatures (1000-1150°C) and pressures (200-400 MPa), under oxidized conditions (NNO to NNO+3, where NNO is the nickel-nickel oxide buffer), with X_Η2O of the H₂O-CO₂ mixture added to the experimental capsule varying between zero and unity. The overall mineralogy and mineral compositions of the natural lavas were reproduced, suggesting oxidizing conditions for the deep magma plumbing system, in marked contrast to the reducing conditions (QFM to QFM -1, where QFM is the quartz-fayalite-magnetite buffer) in the Erebus lava lake. In basanite, crystallization of spinel is followed by olivine and clinopyroxene olivine is replaced by kaersutitic amphibole below 1050°C at intermediate water contents. In phonotephrite, the liquidus phase is kaersutite except in runs with low water content (XH₂O^fluid <0·2) where it is replaced by clinopyroxene. Experimental kaersutite compositions suggest that the amphibole-bearing DVDP lavas differentiated below 1050°C at 200-400MPa and NNO+1·5 to NNO+2. Olivine- and clinopyroxene-bearing EL lavas are consistent with experiments performed above 1050°C and pressures around 200 MPa. The plagioclase liquidus at <1-2 wt % H₂O suggests extremely dry conditions for both lineages (XH₂O^fluid approaching zero for EL,∼0·25 for DVDP), probably facilitated by dehydration induced by a CO₂-rich fluid phase. Our results agree with previous studies that suggest a single plumbing system beneath Ross Island in which DVDP lavas (and probably other peripheral volcanic products) were erupted through radial fractures associated with the ascent of parental magma into the lower crust. The longer travel time of the DVDP lavas through the crust owing to lateral movement along fractures and the lack of a direct, sustained connection to the continuous CO₂-rich gas flux that characterizes the main central Erebus conduit is probably responsible for the lower temperatures and slightly wetter conditions and hence the change in mineralogy observed.Fieldwork in Antarctica was supported by the Office of Polar Programs (National Science Foundation) (ANT1142083). Experimental research was supported by Labex Voltaire (ANR-10-LABX-100-10); and by the University of Cambridge Department of Geography Phillip Lake and William Vaughn Lewis grants
Role of non-mantle CO2 in the dynamics of volcano degassing: The Mount Vesuvius example
International audienceMount Vesuvius, Italy, quiescent since A. D. 1944, is a dangerous volcano currently characterized by elevated CO2 emissions of debated origin. We show that such emissions are most likely the surface manifestation of the deep intrusion of alkalic-basaltic magma into the sedimentary carbonate basement, accompanied by sidewall assimilation and CO2 volatilization. During the last eruptive period (1631-1944), the carbonate-sourced CO2 made up 4.7-5.3 wt% of the vented magma. On a yearly basis, the resulting CO2 production rate is comparable to CO2 emissions currently measured in the volcanic area. The chemical and isotopic composition of the fumaroles supports the predominance of this crust-derived CO2 in volatile emissions at Mount Vesuvius
Thermal Constraints on the Emplacement Rate of a Large Intrusive Complex: The Manaslu Leucogranite, Nepal Himalaya
The emplacement of the Manaslu leucogranite body (Nepal, Himalaya) has been modelled as the accretion of successive sills. The leucogranite is characterized by isotopic heterogeneities suggesting limited magma convection, and by a thin (<100 m) upper thermal aureole. These characteristics were used to constrain the maximum magma emplacement rate. Models were tested with sills injected regularly over the whole duration of emplacement and with two emplacement sequences separated by a repose period. Additionally, the hypothesis of a tectonic top contact, with unroofing limiting heat transfer during magma emplacement, was evaluated. In this latter case, the upper limit for the emplacement rate was estimated at 3·4 mm/year (or 1·5 Myr for 5 km of granite). Geological and thermobarometric data, however, argue against a major role of fault activity in magma cooling during the leucogranite emplacement. The best model in agreement with available geochronological data suggests an emplacement rate of 1 mm/year for a relatively shallow level of emplacement (granite top at 10 km), uninterrupted by a long repose period. The thermal aureole temperature and thickness, and the isotopic heterogeneities within the leucogranite, can be explained by the accretion of 20-60 m thick sills intruded every 20 000-60 000 years over a period of 5 Myr. Under such conditions, the thermal effects of granite intrusion on the underlying rocks appear limited and cannot be invoked as a cause for the formation of migmatite
Economic geology: Volatile destruction
International audienceDirect evidence for the role of volatiles in magmatic ore formation has been elusive. Magma degassing at Merapi volcano in Indonesia is found to be directly linked to the selective leaching of metals from sulphide melts that ultimately form ore deposits
Redox evolution of a degassing magma rising to the surface.
Volatiles carried by magmas, either dissolved or exsolved, have a fundamental effect on a variety of geological phenomena, such as magma dynamics1–5 and the composition of the Earth's atmosphere 6. In particular, the redox state of volcanic gases emanating at the Earth's surface is widely believed to mirror that of the magma source, and is thought to have exerted a first-order control on the secular evolution of atmospheric oxygen6,7. Oxygen fugacity (fO2 ) estimated from lava or related gas chemistry, however, may vary by as much as one log unit8–10, and the reason for such differences remains obscure. Here we use a coupled chemical–physical model of conduit flow to show that the redox state evolution of an ascending magma, and thus of its coexisting gas phase, is strongly dependent on both the composition and the amount of gas in the reservoir. Magmas with no sulphur show a systematic fO2 increase during ascent, by as much as 2 log units. Magmas with sulphur show also a change of redox state during ascent, but the direction of change depends on the initial fO2 in the reservoir. Our calculations closely reproduce the H2S/SO2 ratios of volcanic gases observed at convergent settings, yet the difference between fO2 in the reservoir and that at the exit of the volcanic conduit may be as much as 1.5 log units. Thus, the redox state of erupted magmas is not necessarily a good proxy of the redox state of the gases they emit. Our findings may require re-evaluation of models aimed at quantifying the role of magmatic volatiles in geological processes
Earth science: Redox state of early magmas
International audienceA study of cerium in zircon minerals has allowed an assessment of the redox conditions that prevailed when Earth's earliest magmas formed. The results suggest that the mantle became oxidized sooner than had been though
Upward migration of Vesuvius magma chamber over the past 20 thousand years
International audienceForecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano1,2. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16km (refs 3– 7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8–9km depth8, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7–8km to 3–4km depth between the AD 79 (Pompeii) and AD 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago9 and the 1944 Vesuvius eruption7 are included, the total upward migration of the reservoir amounts to 9–11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation10 or volcano spreading11. Reservoir migration, and the possible influence on feeding rates12, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius
Geochemical and petrological characterization of two large silicic ignimbrites from the Main Ethiopian Rift (Ethiopia)
Rhyolites as the most abundant and scarce or absent intermediate terms (i.e., Daly gap). The mafic products are associated with cinder cones and lava flows while the felsic magmas produced large explosive eruptions often resulting in the formation of large calderas. This work focuses on these highly evolved compositions, the genesis of which still represents a matter of debate. We conducted analyses on two Central MER large silicic units with similar age and petrological characteristics: the 1.16 Ma Golja ignimbrite (GI) and the 1.3 Ma Kencherra ignimbrite (KI). The two units are remarkably crystal-poor with less than 10% of K-feld, qtz, pl, cpx, aen and Fe-Ti oxides and contain different types of juvenile material including white and banded pumices and fiamme as well as dark scoria.
In GI detailed analysis of matrix glass and melt inclusions from all juvenile types reveal a broad compositional spectrum ranging from basalts (found only in the pl-hosted melt inclusions) to rhyolites, with intermediate compositions (basaltic trachyandesites to trachydacites) present in the mingled pumices and dark scoria. Trace element plots show distinct evolutionary trends, not visible in major element compositions, while in-situ 87Sr/86Sr analyses of feldspars display wide isotopic variation ranging from mantle-like to crustal values, akin to the Pan African crust.
In the KI welded pyroclastic sequence, matrix glass and fiamme have rhyolitic composition while scoriaceous clasts, increasing in size and abundance up-sequence, range between trachybasalts and trachytes. Two different groups of rhyolites can be distinguished based on incompatible trace elements and REE concentrations. Overall, geochemical and isotopic data suggest involvement of fractional crystallization, assimilation of old crustal material and magma mixing in petrogenesis of the intermediate and evolved composition from KI and GI. Our data represent the first geochemical characterization of these large ignimbrites and contribute to a better understanding of silicic magmatism in the MER
- …
