104 research outputs found

    Experimental determination of the state-dependent enhancement of the electron-positron momentum density in solids

    Full text link
    The state-dependence of the enhancement of the electron-positron momentum density is investigated for some transition and simple metals (Cr, V, Ag and Al). Quantitative comparison with linearized muffin-tin orbital calculations of the corresponding quantity in the first Brillouin zone is shown to yield a measurement of the enhancement of the s, p and d states, independent of any parameterizations in terms of the electron density local to the positron. An empirical correction that can be applied to a first-principles state-dependent model is proposed that reproduces the measured state-dependence very well, yielding a general, predictive model for the enhancement of the momentum distribution of positron annihilation measurements, including those of angular correlation and coincidence Doppler broadening techniques

    Enhanced electron correlations at the SrxCa1-xVO3 surface

    Get PDF
    We report hard x-ray photoemission spectroscopy measurements of the electronic structure of the prototypical correlated oxide SrxCa1-xVO3. By comparing spectra recorded at different excitation energies, we show that 2.2 keV photoelectrons contain a substantial surface component, whereas 4.2 keV photoelectrons originate essentially from the bulk of the sample. Bulk-sensitive measurements of the O 2p valence band are found to be in good agreement with ab initio calculations of the electronic structure, with some modest adjustments to the orbital-dependent photoionization cross sections. The evolution of the O 2p electronic structure as a function of the Sr content is dominated by A-site hybridization. Near the Fermi level, the correlated V 3d Hubbard bands are found to evolve in both binding energy and spectral weight as a function of distance from the vacuum interface, revealing higher correlation at the surface than in the bulk

    Fermi surface of an important nano-sized metastable phase: Al3_3Li

    Full text link
    Nanoscale particles embedded in a metallic matrix are of considerable interest as a route towards identifying and tailoring material properties. We present a detailed investigation of the electronic structure, and in particular the Fermi surface, of a nanoscale phase (L12L1_2 Al3_3Li) that has so far been inaccessible with conventional techniques, despite playing a key role in determining the favorable material properties of the alloy (Al\nobreakdash-9 at. %\nobreakdash-Li). The ordered precipitates only form within the stabilizing Al matrix and do not exist in the bulk; here, we take advantage of the strong positron affinity of Li to directly probe the Fermi surface of Al3_3Li. Through comparison with band structure calculations, we demonstrate that the positron uniquely probes these precipitates, and present a 'tuned' Fermi surface for this elusive phase

    The electronic structure of {\em R}NiC2_2 intermetallic compounds

    Full text link
    First-principles calculations of the electronic structure of members of the RRNiC2_2 series are presented, and their Fermi surfaces investigated for nesting propensities which might be linked to the charge-density waves exhibited by certain members of the series (RR = Sm, Gd and Nd). Calculations of the generalized susceptibility, χ0(q,ω)\chi_{0}({\bf q},\omega), show strong peaks at the same q{\bf q}-vector in both the real and imaginary parts for these compounds. Moreover, this peak occurs at a wavevector which is very close to that experimentally observed in SmNiC2_2. In contrast, for LaNiC2_2 (which is a superconductor below 2.7K) as well as for ferromagnetic SmNiC2_2, there is no such sharp peak. This could explain the absence of a charge-density wave transition in the former, and the destruction of the charge-density wave that has been observed to accompany the onset of ferromagnetic order in the latter.Comment: 5 pages, 7 figures. Accepted for publication in Phys. Rev.

    Maximum entropy deconvolution of resonant inelastic x-ray scattering spectra

    Get PDF
    Resonant inelastic x-ray scattering (RIXS) has become a powerful tool in the study of the electronic structure of condensed matter. Although the linewidths of many RIXS features are narrow, the experimental broadening can often hamper the identification of spectral features. Here, we show that the Maximum Entropy technique can successfully be applied in the deconvolution of RIXS spectra, improving the interpretation of the loss features without a severe increase in the noise ratio

    Observation of surface states on heavily indium doped SnTe(111), a superconducting topological crystalline insulator

    Get PDF
    The topological crystalline insulator tin telluride is known to host superconductivity when doped with indium (Sn1−x_{1-x}Inx_{x}Te), and for low indium contents (x=0.04x=0.04) it is known that the topological surface states are preserved. Here we present the growth, characterization and angle resolved photoemission spectroscopy analysis of samples with much heavier In doping (up to x≈0.4x\approx0.4), a regime where the superconducting temperature is increased nearly fourfold. We demonstrate that despite strong p-type doping, Dirac-like surface states persist

    Direct Observation of Decoupled Structural and Electronic Transitions and an Ambient Pressure Monoclinic-Like Metallic Phase of VO2_2

    Full text link
    We report the simultaneous measurement of the structural and electronic components of the metal-insulator transition of VO2_2 using electron and photoelectron spectroscopies and microscopies. We show that these evolve over different temperature scales, and are separated by an unusual monoclinic-like metallic phase. Our results provide conclusive evidence that the new monoclinic-like metallic phase, recently identified in high-pressure and nonequilibrium measurements, is accessible in the thermodynamic transition at ambient pressure, and we discuss the implications of these observations on the nature of the MIT in VO2_2

    Coastal connectivity and spatial subsidy from a microbial perspective

    Full text link
    © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. The transfer of organic material from one coastal environment to another can increase production in recipient habitats in a process known as spatial subsidy. Microorganisms drive the generation, transformation, and uptake of organic material in shallow coastal environments, but their significance in connecting coastal habitats through spatial subsidies has received limited attention. We address this by presenting a conceptual model of coastal connectivity that focuses on the flow of microbially mediated organic material in key coastal habitats. Our model suggests that it is not the difference in generation rates of organic material between coastal habitats but the amount of organic material assimilated into microbial biomass and respiration that determines the amount of material that can be exported from one coastal environment to another. Further, the flow of organic material across coastal habitats is sensitive to environmental change as this can alter microbial remineralization and respiration rates. Our model highlights microorganisms as an integral part of coastal connectivity and emphasizes the importance of including a microbial perspective in coastal connectivity studies
    • …
    corecore