5 research outputs found

    Cooperation of N- and C-terminal substrate transmembrane domain segments in intramembrane proteolysis by γ-secretase

    Get PDF
    Intramembrane proteases play a pivotal role in biology and medicine, but how these proteases decode cleavability of a substrate transmembrane (TM) domain remains unclear. Here, we study the role of conformational flexibility of a TM domain, as determined by deuterium/hydrogen exchange, on substrate cleavability by gamma-secretase in vitro and in cellulo. By comparing hybrid TMDs based on the natural amyloid precursor protein TM domain and an artificial poly-Leu non-substrate, we find that substrate cleavage requires conformational flexibility within the N-terminal half of the TMD helix (TM-N). Robust cleavability also requires the C-terminal TM sequence (TM-C) containing substrate cleavage sites. Since flexibility of TM-C does not correlate with cleavage efficiency, the role of the TM-C may be defined mainly by its ability to form a cleavage-competent state near the active site, together with parts of presenilin, the enzymatic component of gamma-secretase. In sum, cleavability of a gamma-secretase substrate appears to depend on cooperating TM domain segments, which deepens our mechanistic understanding of intramembrane proteolysis. Deuterium/hydrogen exchange shows that conformational flexibility of the hybrid transmembrane domains (TMD) of amyloid precursor proteins plays a role in TMD cleavability by gamma-secretase in vitro and in cellulo

    Cleavage efficiency of the intramembrane protease γ-secretase is reduced by the palmitoylation of a substrate's transmembrane domain

    Get PDF
    The intramembrane protease gamma-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While gamma-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how gamma-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by gamma-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where gamma-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by gamma-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by gamma-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by gamma-secretase. The intramembrane protease gamma-secretase has broad physiological functions. However, a fundamental open question is how gamma-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics and domain swap experiments, this study demonstrates that palmitoylation within the C-terminal half of a substrate's transmembrane domain constitutes a new mechanism that can suppress cleavage by gamma-secretase.imag

    The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection

    No full text
    Understanding non-motor symptoms of Parkinson's disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson's disease patients. Mitochondrial dysfunction is a key feature in Parkinson's disease and importantly contributes to the selective loss of dopaminergic neurons thesubstantia nigra pars compacta. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson's disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts
    corecore