148 research outputs found

    Mechanical control of the directional stepping dynamics of the kinesin motor

    Full text link
    Among the multiple steps constituting the kinesin's mechanochemical cycle, one of the most interesting events is observed when kinesins move an 8-nm step from one microtubule (MT)-binding site to another. The stepping motion that occurs within a relatively short time scale (~100 microsec) is, however, beyond the resolution of current experiments, therefore a basic understanding to the real-time dynamics within the 8-nm step is still lacking. For instance, the rate of power stroke (or conformational change), that leads to the undocked-to-docked transition of neck-linker, is not known, and the existence of a substep during the 8-nm step still remains a controversial issue in the kinesin community. By using explicit structures of the kinesin dimer and the MT consisting of 13 protofilaments (PFs), we study the stepping dynamics with varying rates of power stroke (kp). We estimate that 1/kp <~ 20 microsec to avoid a substep in an averaged time trace. For a slow power stroke with 1/kp>20 microsec, the averaged time trace shows a substep that implies the existence of a transient intermediate, which is reminiscent of a recent single molecule experiment at high resolution. We identify the intermediate as a conformation in which the tethered head is trapped in the sideway binding site of the neighboring PF. We also find a partial unfolding (cracking) of the binding motifs occurring at the transition state ensemble along the pathways prior to binding between the kinesin and MT.Comment: 26 pages, 10 figure

    Reporte de consumo de plantas medicinales en gestantes del Centro de Salud Viña Alta, La Molina. Lima, Perú

    Get PDF
    This research aimed to find out the frequency and ways of using medicinal plants by pregnant women treated at the Centro de Salud Viña Alta, located in La Molina district. Twenty-one (21) pregnant women voluntarily participated in the study, where they were administered an expert-validated survey regarding the use of medicinal plants. The results showed that 86 % of the pregnant women used medicinal plants and 67 % did not ask their doctor before using them. The most frequent way of using the medicinal plants was by oral intake as herbal teas. The most widely used medicinal plants were chamomile, parsley, eucalyptus, boldo, aloe, mint and rue, some of which produced a teratogenic effect, uterine stimulant action, abortifacient effect, among others. It is necessary to know the actual quantity and most frequent way of using medicinal plants by pregnant women to classify these products as for its safety level and promote the rational use of traditional medicine to contribute to public health.El objetivo de este trabajo fue conocer la frecuencia y la manera en que las plantas medicinales son empleadas por las gestantes del Centro de Salud Viña Alta del distrito de La Molina. En el estudio participaron veintiuna gestantes, quienes respondieron una encuesta, validada por expertos, sobre el uso de plantas medicinales. Se demostró que el 86,00 % de las gestantes utilizaron plantas medicinales, y que 67,00 % no consultó con un médico sobre su empleo. La manera más frecuente de consumo de las plantas medicinales fue la vía oral, en forma de infusiones. Las plantas medicinales más utilizadas fueron manzanilla, perejil, eucalipto, boldo, aloe, menta y ruda; y algunas de ellas mostraron efecto teratogénico, estimulante uterino, abortivo, entre otros. Es necesario conocer la cantidad real y la manera más frecuente en que las gestantes consumen las plantas medicinales, con la finalidad de clasificar estos productos de acuerdo al nivel de seguridad que ofrecen y promover el uso racional de la medicina tradicional para contribuir en la salud pública

    Economic Impact of a New Rapid PCR Assay for Detecting Influenza Virus in an Emergency Department and Hospitalized Patients.

    Get PDF
    Seasonal influenza causes significant morbidity and mortality and has a substantial economic impact on the healthcare system. The main objective of this study was to compare the cost per patient for a rapid commercial PCR assay (Xpert1 Flu) with an in-house realtime PCR test for detecting influenza virus. Community patients with influenza like-illness attending the Emergency Department (ED) as well as hospitalized patients in the Hospital Clínic of Barcelona were included. Costs were evaluated from the perspective of the hospital considering the use of resources directly related to influenza testing and treatment. For the purpose of this study, 366 and 691 patients were tested in 2013 and 2014, respectively. The Xpert1 Flu test reduced the mean waiting time for patients in the ED by 9.1 hours and decreased the mean isolation time of hospitalized patients by 23.7 hours. This was associated with a 103 (or about 113)reductioninthecostperpatienttestedintheEDand64(113) reduction in the cost per patient tested in the ED and 64 (70) per hospitalized patient. Sensitivity analyses showed that Xpert1 Flu is likely to be cost-saving in hospitals with different contexts and prices

    Motor domain phosphorylation and regulation of the Drosophila kinesin 13, KLP10A

    Get PDF
    Microtubule (MT)-destabilizing kinesin 13s perform fundamental roles throughout the cell cycle. In this study, we show that the Drosophila melanogaster kinesin 13, KLP10A, is phosphorylated in vivo at a conserved serine (S573) positioned within the α-helix 5 of the motor domain. In vitro, a phosphomimic KLP10A S573E mutant displays a reduced capacity to depolymerize MTs but normal affinity for the MT lattice. In cells, replacement of endogenous KLP10A with KLP10A S573E dampens MT plus end dynamics throughout the cell cycle, whereas a nonphosphorylatable S573A mutant apparently enhances activity during mitosis. Electron microscopy suggests that KLP10A S573 phosphorylation alters its association with the MT lattice, whereas molecular dynamics simulations reveal how KLP10A phosphorylation can alter the kinesin–MT interface without changing important structural features within the motor’s core. Finally, we identify casein kinase 1α as a possible candidate for KLP10A phosphorylation. We propose a model in which phosphorylation of the KLP10A motor domain provides a regulatory switch controlling the time and place of MT depolymerization

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    A seesaw model for intermolecular gating in the kinesin motor protein

    Get PDF
    Recent structural observations of kinesin-1, the founding member of the kinesin group of motor proteins, have led to substantial gains in our understanding of this molecular machine. Kinesin-1, similar to many kinesin family members, assembles to form homodimers that use alternating ATPase cycles of the catalytic motor domains, or “heads”, to proceed unidirectionally along its partner filament (the microtubule) via a hand-over-hand mechanism. Cryo-electron microscopy has now revealed 8-Å resolution, 3D reconstructions of kinesin-1•microtubule complexes for all three of this motor’s principal nucleotide-state intermediates (ADP-bound, no-nucleotide, and ATP analog), the first time filament co-complexes of any cytoskeletal motor have been visualized at this level of detail. These reconstructions comprehensively describe nucleotide-dependent changes in a monomeric head domain at the secondary structure level, and this information has been combined with atomic-resolution crystallography data to synthesize an atomic-level "seesaw" mechanism describing how microtubules activate kinesin’s ATP-sensing machinery. The new structural information revises or replaces key details of earlier models of kinesin’s ATPase cycle that were based principally on crystal structures of free kinesin, and demonstrates that high-resolution characterization of the kinesin–microtubule complex is essential for understanding the structural basis of the cycle. I discuss the broader implications of the seesaw mechanism within the cycle of a fully functional kinesin dimer and show how the seesaw can account for two types of "gating" that keep the ATPase cycles of the two heads out of sync during processive movement

    Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration

    Get PDF
    Regulation of microtubule dynamics at the cell cortex is important for cell motility, morphogenesis and division. Here we show that the Drosophila Katanin, Dm-Kat60, functions to generate a dynamic cortical-microtubule interface in interphase cells. In S2 cells, Dm-Kat60 concentrates at the interphase cell cortex where it suppresses the polymerization of microtubule plus-ends thereby preventing the formation of aberrantly dense cortical arrays. Dm-Kat60 also localizes to the leading edge migratory D17 cells and negatively regulates multiple parameters of their motility. Finally, in vitro, Dm-Kat60 severs and depolymerizes MTs from their ends. Based on these data, we propose that Dm-Kat60 removes tubulin from microtubule ends or lattice that contact specific cortical sites to preventing stable and/or lateral attachments. The asymmetric distribution of such an activity could help generate regional variations in MT behaviors involved in cell migration

    Site-Directed Mutations and the Polymorphic Variant Ala160Thr in the Human Thromboxane Receptor Uncover a Structural Role for Transmembrane Helix 4

    Get PDF
    The human thromboxane A2 receptor (TP), belongs to the prostanoid subfamily of Class A GPCRs and mediates vasoconstriction and promotes thrombosis on binding to thromboxane (TXA2). In Class A GPCRs, transmembrane (TM) helix 4 appears to be a hot spot for non-synonymous single nucleotide polymorphic (nsSNP) variants. Interestingly, A160T is a novel nsSNP variant with unknown structure and function. Additionally, within this helix in TP, Ala1604.53 is highly conserved as is Gly1644.57. Here we target Ala1604.53 and Gly1644.57 in the TP for detailed structure-function analysis. Amino acid replacements with smaller residues, A160S and G164A mutants, were tolerated, while bulkier beta-branched replacements, A160T and A160V showed a significant decrease in receptor expression (Bmax). The nsSNP variant A160T displayed significant agonist-independent activity (constitutive activity). Guided by molecular modeling, a series of compensatory mutations were made on TM3, in order to accommodate the bulkier replacements on TM4. The A160V/F115A double mutant showed a moderate increase in expression level compared to either A160V or F115A single mutants. Thermal activity assays showed decrease in receptor stability in the order, wild type>A160S>A160V>A160T>G164A, with G164A being the least stable. Our study reveals that Ala1604.53 and Gly1644.57 in the TP play critical structural roles in packing of TM3 and TM4 helices. Naturally occurring mutations in conjunction with site-directed replacements can serve as powerful tools in assessing the importance of regional helix-helix interactions

    Mutagenesis Objective Search and Selection Tool (MOSST): an algorithm to predict structure-function related mutations in proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functionally relevant artificial or natural mutations are difficult to assess or predict if no structure-function information is available for a protein. This is especially important to correctly identify functionally significant non-synonymous single nucleotide polymorphisms (nsSNPs) or to design a site-directed mutagenesis strategy for a target protein. A new and powerful methodology is proposed to guide these two decision strategies, based only on conservation rules of physicochemical properties of amino acids extracted from a multiple alignment of a protein family where the target protein belongs, with no need of explicit structure-function relationships.</p> <p>Results</p> <p>A statistical analysis is performed over each amino acid position in the multiple protein alignment, based on different amino acid physical or chemical characteristics, including hydrophobicity, side-chain volume, charge and protein conformational parameters. The variances of each of these properties at each position are combined to obtain a global statistical indicator of the conservation degree of each property. Different types of physicochemical conservation are defined to characterize relevant and irrelevant positions. The differences between statistical variances are taken together as the basis of hypothesis tests at each position to search for functionally significant mutable sites and to identify specific mutagenesis targets. The outcome is used to statistically predict physicochemical consensus sequences based on different properties and to calculate the amino acid propensities at each position in a given protein. Hence, amino acid positions are identified that are putatively responsible for function, specificity, stability or binding interactions in a family of proteins. Once these key functional positions are identified, position-specific statistical distributions are applied to divide the 20 common protein amino acids in each position of the protein's primary sequence into a group of functionally non-disruptive amino acids and a second group of functionally deleterious amino acids.</p> <p>Conclusions</p> <p>With this approach, not only conserved amino acid positions in a protein family can be labeled as functionally relevant, but also non-conserved amino acid positions can be identified to have a physicochemically meaningful functional effect. These results become a discriminative tool in the selection and elaboration of rational mutagenesis strategies for the protein. They can also be used to predict if a given nsSNP, identified, for instance, in a genomic-scale analysis, can have a functional implication for a particular protein and which nsSNPs are most likely to be functionally silent for a protein. This analytical tool could be used to rapidly and automatically discard any irrelevant nsSNP and guide the research focus toward functionally significant mutations. Based on preliminary results and applications, this technique shows promising performance as a valuable bioinformatics tool to aid in the development of new protein variants and in the understanding of function-structure relationships in proteins.</p

    Effectiveness of a strategy that uses educational games to implement clinical practice guidelines among Spanish residents of family and community medicine (e-EDUCAGUIA project):A clinical trial by clusters

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias FIS Grant Number PI11/0477 ISCIII.-REDISSEC Proyecto RD12/0001/0012 AND FEDER Funding.Background: Clinical practice guidelines (CPGs) have been developed with the aim of helping health professionals, patients, and caregivers make decisions about their health care, using the best available evidence. In many cases, incorporation of these recommendations into clinical practice also implies a need for changes in routine clinical practice. Using educational games as a strategy for implementing recommendations among health professionals has been demonstrated to be effective in some studies; however, evidence is still scarce. The primary objective of this study is to assess the effectiveness of a teaching strategy for the implementation of CPGs using educational games (e-learning EDUCAGUIA) to improve knowledge and skills related to clinical decision-making by residents in family medicine. The primary objective will be evaluated at 1 and 6months after the intervention. The secondary objectives are to identify barriers and facilitators for the use of guidelines by residents of family medicine and to describe the educational strategies used by Spanish teaching units of family and community medicine to encourage implementation of CPGs. Methods/design: We propose a multicenter clinical trial with randomized allocation by clusters of family and community medicine teaching units in Spain. The sample size will be 394 residents (197 in each group), with the teaching units as the randomization unit and the residents comprising the analysis unit. For the intervention, both groups will receive an initial 1-h session on clinical practice guideline use and the usual dissemination strategy by e-mail. The intervention group (e-learning EDUCAGUIA) strategy will consist of educational games with hypothetical clinical scenarios in a virtual environment. The primary outcome will be the score obtained by the residents on evaluation questionnaires for each clinical practice guideline. Other included variables will be the sociodemographic and training variables of the residents and the teaching unit characteristics. The statistical analysis will consist of a descriptive analysis of variables and a baseline comparison of both groups. For the primary outcome analysis, an average score comparison of hypothetical scenario questionnaires between the EDUCAGUIA intervention group and the control group will be performed at 1 and 6months post-intervention, using 95% confidence intervals. A linear multilevel regression will be used to adjust the model. Discussion: The identification of effective teaching strategies will facilitate the incorporation of available knowledge into clinical practice that could eventually improve patient outcomes. The inclusion of information technologies as teaching tools permits greater learning autonomy and allows deeper instructor participation in the monitoring and supervision of residents. The long-term impact of this strategy is unknown; however, because it is aimed at professionals undergoing training and it addresses prevalent health problems, a small effect can be of great relevance. Trial registration: ClinicalTrials.gov: NCT02210442.Publisher PDFPeer reviewe
    corecore