4,222 research outputs found

    Collective modes of an Anisotropic Quark-Gluon Plasma II

    Full text link
    We continue our exploration of the collective modes of an anisotropic quark gluon plasma by extending our previous analysis to arbitrary Riemann sheets. We demonstrate that in the presence of momentum-space anisotropies in the parton distribution functions there are new relevant singularities on the neighboring unphysical sheets. We then show that for sufficiently strong anisotropies that these singularities move into the region of spacelike momentum and their effect can extend down to the physical sheet. In order to demonstrate this explicitly we consider the polarization tensor for gluons propagating parallel to the anisotropy direction. We derive analytic expressions for the gluon structure functions in this case and then analytically continue them to unphysical Riemann sheets. Using the resulting analytic continuations we numerically determine the position of the unphysical singularities. We then show that in the limit of infinite contraction of the distribution function along the anisotropy direction that the unphysical singularities move onto the physical sheet and result in real spacelike modes at large momenta for all "out-of-plane" angles of propagation.Comment: 13 pages, 8 figure

    Differences between neurosurgeons and orthopaedic surgeons in classifying cervical dislocation injuries and making assessment and treatment decisions: a multicenter reliability study

    Get PDF
    Journal ArticleVariability exists in the management of cervical spinal injuries. The goal of this study was to assess the effect of training specialty (orthopedic surgery vs neurosurgery) on management of cervical dislocations

    A creep model for metallic composites based on matrix testing: Application to Kanthal composites

    Get PDF
    An anisotropic creep model is formulated for metallic composites with strong fibers and low to moderate fiber volume percent (less than 40 percent). The idealization admits no creep in the local fiber direction and assumes equal creep strength in longitudinal and transverse shear. Identification of the matrix behavior with that of the isotropic limit of the theory permits characterization of the composite through uniaxial creep tests on the matrix material. Constant and step-wise creep tests are required as a data base. The model provides an upper bound on the transverse creep strength of a composite having strong fibers embedded in a particular matrix material. Comparison of the measured transverse strength with the upper bound gives an assessment of the integrity of the composite. Application is made to a Kanthal composite, a model high-temperature composite system. Predictions are made of the creep response of fiber reinforced Kanthal tubes under interior pressure

    Surgery for traumatic fractures of the upper thoracic spine (T1–T6)

    Get PDF
    Background: The management of traumatic upper thoracic spine fractures (T1–T6) is complex due to the unique biomechanical/physiological characteristics of these levels and the nature of the injuries. They are commonly associated with multiple other traumatic injuries and severe spinal cord injuries. We describe the safety and efficacy of surgery for achieving stability and maintaining reduction of upper thoracic T1–T6 spine fractures. Methods: We retrospectively analyzed a series of traumatic unstable upper thoracic (T1–T6) spine fractures treated at one institution between 1993 and 2016. All patients were assessed neurologically and underwent complete preoperative radiographic analysis of their T1–T6 spine fractures including assessment of instability. Neurological and radiographic outcomes including fusion rates, kyphotic deformity, and successful reduction of the fracture were evaluated along with hospital length of stay (LOS), intensive care unit LOS, and overall complication rates. Results: There were 43 patients (29 males, 14 females) with an average age of 37.7 years. Between 1993 and 1999, 8 patients were treated with hook/rod constructs, whereas between 1995 and 2016, 35 patients received pedicle screw fixation utilizing intraoperative fluoroscopy or computed tomography (CT) navigation. Forty‑three patients had a total of 178 levels fused. In this series, there were no intraoperative vascular or neurological complications. Instrumentation was removed in five patients due to pain, wound infection, or hardware failure. The mean hospital LOS was 21.1 days (range 4–59 days), and there was a 95% fusion rate based on follow‑up imaging (X‑rays or CT scan). Conclusions: Surgical treatment of upper thoracic spine fractures (T1–T6), although complex, is safe and effective. Reduction and fixation of these fractures decreases the risk of further neurological complications, allows for earlier mobilization, and correlates with shorter hospital LOS and improved outcomes

    Hard thermal loops and the entropy of supersymmetric Yang-Mills theories

    Get PDF
    We apply the previously proposed scheme of approximately self-consistent hard-thermal-loop resummations in the entropy of high-temperature QCD to N=4 supersymmetric Yang-Mills (SYM) theories and compare with a (uniquely determined) R[4,4] Pad\'e approximant that interpolates accurately between the known perturbative result and the next-to-leading order strong-coupling result obtained from AdS/CFT correspondence. We find good agreement up to couplings where the entropy has dropped to about 85% of the Stefan-Boltzmann value. This is precisely the regime which in purely gluonic QCD corresponds to temperatures above 2.5 times the deconfinement temperature and for which this method of hard-thermal-loop resummation has given similar good agreement with lattice QCD results. This suggests that in this regime the entropy of both QCD and N=4 SYM is dominated by effectively weakly coupled hard-thermal-loop quasiparticle degrees of freedom. In N=4 SYM, strong-coupling contributions to the thermodynamic potential take over when the entropy drops below 85% of the Stefan-Boltzmann value.Comment: 14 pages, 2 figures, JHEP3. v2: revised and expanded, with unchanged HTL results but corrected NLO strong-coupling result from AdS/CFT (which is incorrectly reproduced in almost all previous papers comparing weak and strong coupling results of N=4 SYM) and novel (unique) Pade approximant interpolating between weak and strong coupling result

    Malignant Cerebral Edema following CT Myelogram Using Isovue-M 300 Intrathecal Nonionic Water-Soluble Contrast: A Case Report

    Get PDF
    Lumbar myelogram utilizing nonionic contrast is a commonly performed procedure to identify spinal pathology. Complication rates are low. Cerebral edema has been shown to occur following intrathecal injection of ionic contrast; however, no current literature has documented this complication relating to the ubiquitously used nonionic contrast medium. We report a case of a patient who developed malignant cerebral edema following a lumbar myelogram with Isovue-M 300 nonionic water-soluble intrathecal contrast. We believe this is the first reported case of cerebral edema resulting from the use of a nonionic contrast

    Bare Below the Elbows: A comparative study of a tertiary and district general hospital.

    Get PDF
    A \u27Bare Below the Elbows\u27 (BBTE) dress code policy has been introduced by the majority of NHS trusts in the UK. The aim of this Irish study was to evaluate the impact of an educational intervention on perception of medical attire. The study was carried out in two centres: a tertiary referral centre (Beaumont Hospital) and a district hospital (MRH, Portlaoise). Two questionnaires, incorporating photographic evaluation of appropriate attire for consultants and junior doctors, were completed pre and post BBTE education. One hundred and five patients participated. Analysis pre BBTE education indicated patients considered formal attire and white coats most appropriate for consultants and junior doctors respectively. Post-intervention analysis revealed a significant reduction in the popularity of both (

    Biosimilar Pegfilgrastim: Improving Access and Optimising Practice to Supportive Care that Enables Cure

    Get PDF
    Febrile neutropenia (FN) is a serious complication of chemotherapy, which can cause significant morbidity and mortality, result in dose delays and reductions and, ultimately, reduce cancer survival. Over the past decade, the availability of biosimilar filgrastim (short-acting granulocyte colony-stimulating factor [G-CSF]) has transformed patient access, with clear evidence of clinical benefit at preventing FN at reduced costs. In 2019, seven biosimilar pegfilgrastims (long-acting G-CSFs) were licensed, creating optimal market conditions and choice for prescribers. FN affects up to 117 per 1000 cancer patients, with mortality rates in the range of 2–21%. By reducing FN incidence and improving chemotherapy relative dose intensity (RDI), G-CSF has been associated with a 3.2% absolute survival benefit. Guidelines recommend primary prophylaxis and that filgrastim be administered for 10–14 days, while pegfilgrastim is administered once per cycle. When taken according to the guidelines, pegfilgrastim and filgrastim are equally effective. However, in routine clinical practice, filgrastim is often under-dosed (< 7 days) and has been shown to be inferior to pegfilgrastim at reducing FN incidence, hospitalisations and maintaining RDI. Once-per-cycle administration with pegfilgrastim might also aid patient adherence. The introduction of biosimilar pegfilgrastim should instigate a rethink of neutropenia management. Biosimilar pegfilgrastim
    corecore