36,361 research outputs found
Recommended from our members
The critical events for motor-sensory temporal recalibration
Determining if we, or another agent, were responsible for a sensory event can require an accurate sense of timing. Our sense of appropriate timing relationships must, however, be malleable as there is a variable delay between the physical timing of an event and when sensory signals concerning that event are encoded in the brain. One dramatic demonstration of such malleability involves having people repeatedly press a button thereby causing a beep. If a delay is inserted between button presses and beeps, when it is subsequently taken away beeps can seem to precede the button presses that caused them. For this to occur it is important that people feel they were responsible for instigating the beeps. In terms of their timing, as yet it is not clear what combination of events is important for motor-sensory temporal recalibration. Here, by introducing ballistic reaches of short or longer extent before a button press, we varied the delay between the intention to act and the sensory consequence of that action. This manipulation failed to modulate recalibration magnitude. By contrast, introducing a similarly lengthened delay between button presses and consequent beeps eliminated recalibration. Thus it would seem that the critical timing relationship for motor-sensory temporal recalibration is between tactile signals relating to the completion of an action and the subsequent auditory percept
Finite size scaling analysis of compact QED
We describe results of a high-statistics finite size scaling analysis of 4d
compact U(1) lattice gauge theory with Wilson action at the phase transition
point. Using a multicanonical hybrid Monte Carlo algorithm we generate data
samples with more than 150 tunneling events between the metastable states of
the system, on lattice sizes up to 18^4. We performed a first analysis within
the Borgs-Kotecky finite size scaling scheme. As a result, we report evidence
for a first-order phase transition with a plaquette energy gap, G=0.02667(20),
at a transition coupling, beta_T=1.011128(11).Comment: Lattice 2000 (Topics in Gauge Theories),6 pages, 6 figures, LaTe
Experimental neutrino physics
The current experimental status of neutrino physics is reviewed. It contains
the evidences for a non-vanishing neutrino rest mass from neutrino oscillation
searches. In addition an outlook is given on determining the various mixing
matrix elements and mass differences more precisely with new experiments. Of
special interest is the value of the mixing angle \theta_{13} determining the
possibility of detecting leptonic CP violation in the future. The prospect for
absolute mass measurements using beta and double beta decay as well as
cosmological observations is presented.Comment: 11 pages, 11 figures, Inv. talk presented at the DPF 2004 meeting of
the APS, Riverside, Aug. 200
Aerosol particle molecular spectroscopy
The molecular spectroscopy of a solution particle by structure resonance modulation spectroscopy is discussed [S. Arnold and A. B. Pluchino, "Infrared Spectrum of a Single Aerosol Particle by Photothermal Modulation of Structure Resonances," Appl. Opt. 21, 4194 (1982); S. Arnold et al., "Molecular Spectroscopy of a Single Aerosol Particle," Opt. Lett. 9, 4 (1984)]. Analytical equations are derived for time dependence of the particle radius as it interacts with a low intensity IR source (<20 mW/cm^2). This formalism is found to be in good agreement with pulsed experiments. Working equations for the spectroscopy are derived for both constant and periodic IR excitation
Recommended from our members
Spatial grouping resolves ambiguity to drive temporal recalibration.
Cross-modal temporal recalibration describes a shift in the point of subjective simultaneity (PSS) between 2 events following repeated exposure to asynchronous cross-modal inputs-the adaptors. Previous research suggested that audiovisual recalibration is insensitive to the spatial relationship between the adaptors. Here we show that audiovisual recalibration can be driven by cross-modal spatial grouping. Twelve participants adapted to alternating trains of lights and tones. Spatial position was manipulated, with alternating sequences of a light then a tone, or a tone then a light, presented on either side of fixation (e.g., left tone-left light-right tone-right light, etc.). As the events were evenly spaced in time, in the absence of spatial-based grouping it would be unclear if tones were leading or lagging lights. However, any grouping of spatially colocalized cross-modal events would result in an unambiguous sense of temporal order. We found that adapting to these stimuli caused the PSS between subsequent lights and tones to shift toward the temporal relationship implied by spatial-based grouping. These data therefore show that temporal recalibration is facilitated by spatial grouping. (PsycINFO Database Record (c) 2011 APA, all rights reserved)
Nuclide production in (very) small meteorites
One of the most interesting open questions in the study of cosmic-ray effects in meteorites is the expected behavior of objects which are very small compared to the mean interaction length of primary galactic cosmic ray (GCR) particles. A reasonable limit might be a pre-atmospheric radius of 5 gram/cm(2), or 1.5 cm for chondrites. These are interesting for at least three reasons: (1) this is a limiting case for large objects, and can help us make better models; (2) this size is intermediate between usual meteorites and irradiated grams (spherules); and (3) these are the most likely objects to show solar cosmic ray (SCR) effects. Reedy (1984) has recently proposed a model for production by GCR of radioactive and stable nuclides in spherical meteorites. Very small objects are expected to deviate from this model in the direction of fewer secondary particles (larger spectral shape parameter), at all depths. The net effect will be significantly lower production of such low-energy products as Mn-53 and Al-26. The SCR production of these and other nuclides will be lower, too, because meteorite orbits extend typically out into the asteroid belt, and the mean SCR flux must fall off approximately as r(-2) with distance from the Sun. Kepler's laws insure that for such orbits most of the exposure time is spent near aphelion. None the less the equivalent mean exposure distance, R(exp), is slightly less than the semimajor axis A because of the weighting by R(-2). For the three meteorite orbits we have, R(exp) has a narrow range, from about 1.6 to 2.1 a.u. This is probably true for the great majority of meteorites
Recommended from our members
Neural correlates of subjective timing precision and confidence
Humans perceptual judgments are imprecise, as repeated exposures to the same physical stimulation (e.g. audio-visual inputs separated by a constant temporal offset) can result in different decisions. Moreover, there can be marked individual differences â precise judges will repeatedly make the same decision about a given input, whereas imprecise judges will make different decisions. The causes are unclear. We examined this using audio-visual (AV) timing and confidence judgments, in conjunction with electroencephalography (EEG) and multivariate pattern classification analyses. One plausible cause of differences in timing precision is that it scales with variance in the dynamics of evoked brain activity. Another possibility is that equally reliable patterns of brain activity are evoked, but there are systematic differences that scale with precision. Trial-by-trial decoding of input timings from brain activity suggested precision differences may not result from variable dynamics. Instead, precision was associated with evoked responses that were exaggerated (more different from baseline) ~300âms after initial physical stimulations. We suggest excitatory and inhibitory interactions within a winner-take-all neural code for AV timing might exaggerate responses, such that evoked response magnitudes post-stimulation scale with encoding success
Investigating a simple model of cutaneous wound healing angiogenesis
A simple model of wound healing angiogenesis is presented, and investigated using numerical and asymptotic techniques. The model captures many key qualitative features of the wound healing angiogenic response, such as the propagation of a structural unit into the wound centre. A detailed perturbative study is pursued, and is shown to capture all features of the model. This enables one to show that the level of the angiogenic response predicted by the model is governed to a good approximation by a small number of parameter groupings. Further investigation leads to predictions concerning how one should select between potential optimal means of stimulating cell proliferation in order to increase the level of the angiogenic response
- âŠ