56 research outputs found

    A Novel Approach for Designing Omnidirectional Slotted-Waveguide Antenna Array

    Get PDF
    This paper presents a novel design of a high-gain omnidirectional slotted-waveguide antenna array for 5G mm-wave applications. The structure is based on a circular waveguide filled with teflon for manipulating its dimension. It provides 12,1 dBi gain and omnidirectional coverage in the azimuth plane with only 1.3 dB deviation, which is ensured by making use of a twisting technique for proper placing the slots into the waveguide walls. A bandwidth of 1.61 GHz centered at 26.2 GHz has been numerically demonstrated

    Applicability of low macrobending loss hollow-core PCF to FTTH applications

    Get PDF
    Fiber-To-The-Home (FTTH) technology has been significantly implemented in access networks, providing very high data rates transmission and a variety of digital content to subscribers. It involves an optical cable link being installed between the building entry point and each subscriber with the Multiple Dwelling Units (MDUs), i.e. flats and apartments. In other words, optical cable has to lie fairly straight to carry a strong signal, since typically is necessary to bend, twist and turn the lines in and out of tight corners without degrading the link connection. In this paper we propose the use of Hollow-Core Photonic Crystal Fiber (HC-PCF) for FTTH applications. It is presented an experimental analysis of the macrobending effects in a HC-PCF based on a comparison with traditional fibers and by following the ITU-T G.657B standard recommendations. We observe this fiber, with only 6.5 µm core, is bending loss insensitive, even at extremely small bending radius of 2 mm, in which it presents a loss of only 0.58 dB.251258Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Experimental characterization of a catalytically active flagellin variant in Clostridium haemolyticum

    Get PDF
    The bacterial flagellum is made up of approximately 20,000 subunits of the monomeric protein, flagellin, and plays a role in cell motility and pathogenesis. The extreme sequence diversity within the hypervariable region of flagellin genes observed across phyla suggests hidden functional diversity. This thesis outlines the discovery of the first family of flagellin variants with proteolytic activity. A multi-faceted approach revealed a conserved HExxH motif within the hypervariable region (HVR) of these flagellin variants. The motif is characteristic of the Gluzincin family of thermolysin-like peptidases and was found to be conserved in 74 bacterial species spanning over 32 genera. Experimental validation began with the recombinant expression and purification of the HVR of the flagellin FliA(H) from the species Clostridium haemolyticum, an animal pathogen. An approach using mass spectrometry and proteomics revealed that the substrate specificity of this flagellin protease is similar to that of zinc-dependant matrix metallopeptidases (MMPs). Furthermore, peptide sequencing of harvested C.haemolyticum flagellar filaments revealed that the proteolytic flagellin was the second most dominant flagellin component and was also shown to have MMP-like protease activity. Considering the expanded functional repertoire of this organelle in the recent years, this flagellin-associated protease may play a role in chemotaxis, biofilm formation, adhesion and pathogenesis

    Recent Progress And Novel Applications Of Photonic Crystal Fibers

    No full text
    Photonic crystal fibers present a wavelength-scale periodic microstructure running along their length. Their core and two-dimensional photonic crystal might be based on varied geometries and materials, enabling light guidance due to different propagation mechanisms in an extremely large wavelength range, extending to the terahertz regions. As a result, these fibers have revolutionized the optical fiber technology by means of creating new degrees of freedom in the fiber design, fabrication and applicability. This report aims to provide a detailed statement on the recent progress and novel potential applications of photonic crystal fibers. © 2010 IOP Publishing Ltd.732Russell, P.S.J., A neat idea (2001) IEE Rev., 47, pp. 19-23Russell, P.S.J., Photonic crystal fibers (2003) Science, 299, pp. 358-362Knight, J., Birks, T., Russell, P.S.J., Atkin, D., All-silica single-mode fiber with photonic crystal cladding (1996) Opt. Lett., 21, pp. 1547-1549Knight, J., Photonic crystal fibres (2003) Nature, 424, pp. 847-851Kertész, A.E., Photonic band gap materials in butterfly scales: A possible source of 'blueprints' (2008) Mater. Sci. Eng., 149, pp. 259-265Arismar Cerqueira, S., Luan, F., Cordeiro, C.M.B., George, A.K., Knight, J.C., Hybrid photonic crystal fiber (2006) Opt. Express, 14, pp. 926-931Wiederhecker, G.S., Cordeiro, C.M.B., Couny, F., Benabid, F., Maier, S.A., Knight, J.C., De Brito Cruz, C.H., Fragnito, H.L., Field enhancement within an optical fibre with a subwavelength air core (2007) Nature Photon., 1, pp. 115-118Correa, R.A., Knight, J., Novel process eases production of hollow-core fiber (2008) Laser Focus World, 45, pp. 67-69Arismar Cerqueira, S., Nobrega, K.Z., Hernandez-Figueroa, H.E., Di Pasquale, F., PCFDT: An accurate and friendly photonic crystal fiber design tool (2008) Optik Int. J. Light Electron. Opt., 119, pp. 723-732Koshiba, M., Full-vector analysis of photonic crystal fibers using the finite element method (2002) IEICE Trans. Electron., 85, pp. 881-888Ferrando, A., Silvestre, E., Miret, J.J., Andres, P., Vector description of higher-order modes in photonic crystal fibers (2000) J. Opt. Soc. Am., 17, pp. 1333-1340Birks, T.A., Mogilevtsev, D., Russell, P.S.J., Localized function method for modeling defect modes in 2-d photonic crystals (1999) J. Lightwave Technol., 17, pp. 2078-2081Zhu, Z., Brown, T.G., Full-vectorial finite-difference analysis of microstructured optical fibers (2002) Opt. Express, 10, pp. 854-864Issa, N.A., Poladian, L., Vector wave expansion method for leaky modes of microstructured optical fibers (2003) J. Lightwave Technol., 21, pp. 1005-1012White, T.P., Kuhlmey, B.T., McPhedran, R.C., Maystre, D., Renversez, R., De Sterke, C.M., Botten, L.C., Multipole method for microstructured optical fibers: I. Formulation (2002) J. Opt. Soc. Am., 19, pp. 2322-2330Wang, X., Lou, J., Lu, C., Zhao, C.L., Ang, W.T., Modeling of PCF with multiple reciprocity boundary element method (2004) Opt. Express, 12, pp. 961-966Birks, T., Knight, J., Russell, P., Endlessly single-mode photonic crystal fiber (1997) Opt. Lett., 22, pp. 961-963Mortensen, N.A., Photonic crystal fibres: Mapping Maxwell's equations onto a Schrödinger equation eigenvalue problem (2006) J. Eur. Opt. Soc. Rapid Public., 1, p. 06009Renversez, G., Bordas, F., Kuhlmey, B.T., Second mode transition in microstructured optical fibers: Determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size (2005) Opt. Lett., 30, pp. 1264-1266Kurokawa, K., Nakajima, K., Tsujikawa, K., Yamamoto, T., Tajima, K., Ultra-wideband transmission over low loss PCF (2009) J. Lightwave Technol., 27, pp. 1653-1662Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P., De Sandro, J.-P., Large mode area photonic crystal fibre (1998) Electronics Letters, 34 (13), pp. 1347-1348Furusawa, K., Malinowski, A., Price, J.H.V., Monro, T.M., Sahu, J.K., Nilsson, J., Richardson, D.J., Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding (2001) Opt. Express, 9, pp. 714-720Ortigosa-Blanch, A., Knight, J., Wadsworth, W.J., Arriaga, J., Mangam, B.J., Birks, T., Russell, P., Highly birefringent photonic crystal fibers (2000) Opt. Lett., 25, pp. 1325-1327Folkenberg, J., Nielsen, M., Mortensen, N., Jakobsen, C., Simonsen, H., Polarization maintaining large mode area photonic crystal fiber (2004) Opt. Express, 12, pp. 956-960Folkenberg, J.R., Nielsen, M.D., Jakobsen, C., Broadband single-polarization photonic crystal fiber (2005) Optics Letters, 30 (12), pp. 1446-1448. , DOI 10.1364/OL.30.001446Ranka, J., Windeler, R., Stentz, A., Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm (2000) Opt. Lett., 25, pp. 25-27Ferrando, A., Silvestre, E., Miret, J.J., Andres, P., Nearly zero ultraflattened dispersion in photonic crystal fibers (2000) Opt. Lett., 25, pp. 790-792Reeves, W., Knight, J., Russell, P., Roberts, P., Demonstration of ultraflattened dispersion in photonic crystal fibers (2002) Opt. Express, 10, pp. 609-613Monro, T.M., West, Y.D., Hewak, D.W., Broderick, N.G.R., Richardson, D.J., Chalcogenide holey fibers (2000) Electron. Lett., 36, pp. 1998-2000Leong, J.Y.Y., Al, E., High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1 νm pumped supercontinuum generation (2006) J. Lightwave Technol., 24, p. 183Ebendorff-Heidepriem, H., Petropoulos, P., Asimakis, S., Finazzi, V., Moore, R.C., Frampton, K., Koizumo, F., Monro, T.M., Bismuth glass holey fibers with high nonlinearity (2004) Opt. Express, 12, pp. 5082-5087Kumar, V.V.R.K., George, A.K., Reeves, W.H., Knight, J.C., Russell, P.S.J., Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation (2002) Opt. Express, 10, pp. 1520-1525Arismar Cerqueira, S., Chavez Boggio, J.M., Rieznik, A.A., Hernandez Figueroa, H.E., Fragnito, H.L., Knight, J.C., Highly efficient generation of broadband cascaded four-wave mixing products (2008) Opt. Express, 16, pp. 2816-2828Wadsworth, W.J., Joly, N., Knight, J.C., Birks, T.A., Biancalana, F., Russell, P.S., Supercontinuum and four-wave mixing with q-switched pulses in endlessly single-mode photonic crystal fibers (2004) Opt. Express, 12, pp. 299-309Ranka, J.K., Windeler, R.S., Stentz, A.J., Optical properties of high delta air silica microstructure optical fibers (2000) Opt. Lett., 25, pp. 796-798Travers, J.C., Stone, J.M., Rulkov, A.B., Cumberland, B.A., George, A.K., Popov, S.V., Knight, J.C., Taylor, J.R., Optical pulse compression in dispersion decreasing photonic crystal fiber (2007) Opt. Express, 15, pp. 13203-13211Wadsworth, W.J., Ortigosa-Blanch, A., Knight, J.C., Birks, T.A., Martin Man, T.-P., Russell St, P.J., Supercontinuum generation in photonic crystal fibers and optical fiber tapers: A novel light source (2002) J. Opt. Soc. Am., 19, pp. 2148-2155Omenetto, F.G., Al, E., Spectrally smooth supercontinuum from 350 nm to 3 νm in sub-centimeter lengths of soft-glass photonic crystal fibers (2006) Opt. Express, 14, pp. 4928-4934Humbert, G., Al, E., Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre (2006) Opt. Express, 14, pp. 1596-1603Inoue, K., Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing (1994) Opt. Lett., 19, pp. 1189-1191Domachuk, P., Wolchover, N.A., Cronin-Golomb, M., Wang, A., George, A.K., Cordeiro, C.M.B., Knight, J.C., Omenetto, F.G., Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs (2008) Opt. Express, 16, pp. 7161-7168Dai, J., Harrington, J.A., High-peak-power, pulsed CO 2 laser light delivery by hollow glass waveguides (1997) Appl. Opt., 36, pp. 5072-5077Mangam, R.F.C.B.J., Knight, J.C., Birks, T.A., Russell, P.S.J., Roberts, P.J., Allan, D.C., Single-mode photonic bandgap guidance of light in air (1999) Science, 285, pp. 1537-1539Petrovich, M.N., Poletti, F., Van Brakel, A., Richardson, D.J., Robustly single mode hollow core photonic bandgap fiber (2008) Opt. Express, 16, pp. 4337-4346Roberts, P.J., Al, E., Ultimate low loss of hollow-core photonic crystal fibres (2005) Opt. Express, 13, pp. 236-244Skibina, J.S., Iliew, R., Bethge, J., Bock, M., Fischer, D., Beloglasov, V.I., Wedell, R., Steinmeyer, G., (2008) Nature Photon., 2, p. 679Birks, T.A., Bird, D.M., Heddley, T.D., Pottage, J.M., Russell, P.S.J., Scaling laws and vector effects in bandgap-guiding fibres (2003) Opt. Express, 12, pp. 69-74Luan, F., George, A.K., Hedley, T.D., Pearce, G.J., Bird, D.M., Knight, J.C., Russell, P.S.J., All-solid photonic bandgap fiber (2004) Opt. Lett., 29, pp. 2369-4Argyros, A., Birks, T.A., Leon-Saval, S.G., Cordeiro, C.M.B., Luan, F., Russell, P.S.J., Photonic bandgap with an index step of one percent (2004) Opt. Express, 13, pp. 1540-1550Litchinitser, N.M., Dunn, S.C., Steinvurzel, P.E., Eggleton, B.J., White, T.P., McPhedran, R.C., De Sterke, C.M., Application of an arrow model for designing tunable photonic devices (2004) Opt. Express, 12, pp. 1540-1550Bouwmans, G., Bigot, L., Quiquempois, Y., Lopez, F., Provino, L., Douay, M., Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20dB/km) around 1550 nm (2005) Opt. Express, 13, pp. 8452-8459Eijkelenborg, M.A.V., Al, E., Microstructured polymer optical fiber (2001) Opt. Express, 9, pp. 319-327Oskooi, A.F., Joannopoulos, J.D., Johnson, S.G., Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers (2009) Opt. Express, 17, pp. 10082-10090Monro, T.M., Ebendorff-Heidepriem, H., Progress on microstructured optical fibers (2006) Annu. Rev. Mater. Res., 36, pp. 467-495Furusawa, K., Monro, T.M., Petropoulos, P., Richardson, D.J., A tunable femtosecond pulse source operating in the range 1.06-1.33 microns based on an Yb doped holey fiber amplifier (2001) Proc. CLEOWang, Z., Taru, T., Birks, T.A., Knight, J.C., Liu, Y., Du, J., Coupling in dual-core photonic bandgap fibers: Theory and experiment (2007) Opt. Express, 15, pp. 4795-4803Feng, X., Mairaj, A.K., Hewak, D.W., Monro, T.M., Towards high-index glass based monomode holey fiber with large mode area (2004) Electron. Lett., 40, pp. 167-169Mori, A., Shikano, K., Enbutsu, K., Oikawa, K.M., Kato, K.N., Aozasa, S., 1.5 νm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient of 675 w-1 km-1 (2004) Proc. European Conf. on Optical CommunicationArismar Cerqueira, S., Cordeiro, C.M.B., Biancalana, F., Roberts, P.J., Hernandez-Figueroa, H.E., Cruz, C.H., Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber (2008) Opt. Lett., 33, pp. 2080-2082Cerqueira Jr., A.S., Hernandez-Figueroa, H.E., Fragnito, H.L., Highly birefringent hybrid photonic crystal fiber (2009) Proc. PIERS 2009-Progress in Electromagnetics Research Symp.Xiao, L., Jin, W., Demokan, M.S., Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: Hybrid PCFs (2007) Opt. Express, 15, pp. 15637-15647Perrin, M., Quiquempois, Y., Bouwmans, G., Douay, M., Coexistence of total internal reflection and bandgap modes in solid core photonic bandgap fibre with interstitial air holes (2007) Opt. Express, 15, pp. 13783-13795Lyngs, J.K., Mangan, B.J., Roberts, P.J., Polarization maintaining hybrid TIR/bandgap all-solid photonic crystal fiber (2007) Proc. Conf. on Lasers and Electro-OpticsSaini, S., Hong, C.Y., Bernardis, S., Pfaff, N., Kimerling, L.C., Michel, J., Hybrid waveguides for optically pumped amplifiers (2009) Appl. Phys. Lett., 94, p. 091117Schreiber, T., Al, E., Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity (2005) Opt. Express, 13, pp. 7621-7630Eggleton, B., Kerbage, C., Westbrook, P., Windeler, R., Hale, A., Microstructured optical fiber devices (2001) Opt. Express, 9, pp. 698-713Wadsworth, W., Witkowska, A., Leon-Saval, S., Birks, T., Hole inflation and tapering of stock photonic crystal fibres (2005) Opt. Express, 13, pp. 6541-6549Cordeiro, C.M.B., Dos Santos, E.M., Brito Cruz, C.H., De Matos, C.J., Ferreira, D.S., Lateral access to the holes of photonic crystal fibers-selective filling and sensing applications (2006) Opt. Express, 14, pp. 8403-8412Benabid, F., Couny, F., Knight, J., Birks, T.A., Russell, P.S.J., Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres (2005) Nature, 434, pp. 488-851Wu, Z., Mi, Z., Bhattacharya, P., Zhu, T., Xu, J., Enhanced spontaneous emission at 1.55 νm from colloidal PbSe quantum dots in a Siphotonic crystal microcavity (2007) Appl. Phys. Lett., 90, p. 171105Busch, K., John, S., Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum (1999) Phys. Rev. Lett., 83, pp. 967-970Wolĩski, T.R., Ertman, S., Lesiak, P., Domãski, A.W., Czapla, A., Dabrowski, R., Nowinowski-Kruszelicki, Wójcik, J., Photonic liquid crystal fibers-a new challenge for fiber optics and liquid crystals photonics (2006) Opto-Electron. Rev., 14, pp. 329-334Larsen, T., Bjarklev, A., Hermann, D., Broeng, J., Optical devices based on liquid crystal photonic bandgap fibres (2003) Opt. Express, 11, pp. 2589-2596Jensen, J.B., Al, E., Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions (2004) Opt. Lett., 29, pp. 1974-1976Du, Y., Lu, Q., Wu, S.T., Electrically tunable liquid-crystal photonic crystal fiber (2004) Appl. Phys. Lett., 85, pp. 2181-2183Alkeskjold, T.T., Laegsgaard, J., Bjarklev, A., Hermann, D.S., Broeng, J., Li, J., Wu, S.T., All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers (2004) Opt. Express, 12, pp. 5857-5871Rosberg, C.R., Bennet, F.H., Neshev, D.N., Rasmussen, P.D., Bang, O., Krolikowski, W., Bjarklev, A., Kivshar, Y.S., Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers (2007) Opt. Express, 15, pp. 12145-12150Kerbage, C., Eggleton, B., Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber (2002) Opt. Express, 10, pp. 246-255De Matos, C.J., Cordeiro, C.M.B., Dos Santos, E.M., Ong, J.S., Bozolan, A., Brito Cruz, C.H., Liquid-core, liquid-cladding photonic crystal fibers (2007) Opt. Express, 15, pp. 11207-11212Pines, D., Collective energy losses in solids (1956) Rev. Mod. Phys., 28, pp. 184-198Weiner, J., (2009) Rep. Prog. Phys., 72, p. 064401Ritchie, R.H., Plasma losses by fast electrons in thin films (1957) Phys. Rev., 106, pp. 874-881Gauvreau, B., Hassani, A., Fehri, M.F., Kabashin, A., Skorobogatiy, M., Photonic bandgap fiber-based surface plasmon resonance sensors (2007) Opt. Express, 15, pp. 11413-11426Hassani, A., Skorobogatiy, M., Design of the microstructured optical fiber-based surface plasmon resonance sensor with enhanced microfluidics (2006) Opt. Express, 14, pp. 11616-11621Schmidt, M.A., Sempere, L.N.P., Tyagi, H.K., Poulton, C.G., Russell St, P.J., Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires (2008) Phys. Rev., 77, p. 033417Hou, J., Bird, A., George, A., Maier, S., Kuhlmey, B., Knight, J.C., Metallic mode confinement in microstructured fibres (2008) Opt. Express, 16, pp. 5983-5990Lin, K., Lu, Y., Chen, J., Zheng, R., Wang, P., Ming, H., Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity (2008) Opt. Express, 16, pp. 18599-18604Chesini, C., Cordeiro, C.M.B., De Matos, C.J., Fokine, M., Carvalho, I.C.S., Knight, J.C., All-fiber devices based on photonic crystal fibers with integrated electrodes (2009) Opt. Express, 17, pp. 1660-1665Schider, G., Al, E., Plasmon dispersion relation of Au and Ag nanowires (2003) Phys. Rev., 68, p. 155427Hautakorpi, M., Mattinen, M., Ludvigsen, H., Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber (2008) Opt. Express, 16, pp. 8427-8432Millo, A., Lobachinsky, L., Katzir, A., Single-mode octagonal photonic crystal fibers for the middle infrared (2008) Appl. Phys. Lett., 92, p. 021112Couny, F., Roberts, P.J., Benabid, F., Birks, T.A., Square-lattice large-pitch hollow-core photonic crystal fiber (2008) Proc. Conf. on Lasers and Electro-OpticsPalka, N., Ciurapiński, W., Wojcik, J., Szustakowski, M., Core-ring photonic crystal fibers for sensing (2008) Eur. Phys. J., 154, pp. 139-142Ponseca, C.S., Pobre, R., Estacio, E., Sarukura, N., Argyros, A., Large, M.C., Eijkelenborg, M.A.V., Transmission of terahertz radiation using a microstructured polymer optical fiber (2008) Opt. Lett., 33, pp. 902-904Razzak, S.M.A., Namihira, Y., Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers (2008) Photon. Technol. Lett., 20, pp. 249-251Couny, F., Benabid, F., Roberts, P.J., Light, P.S., Raymer, M.G., Generation and photonic guidance of multi-octave optical-frequency combs (2007) Science, 318, p. 1118Palka, N., Szustakowski, M., Conventional and photonic crystal optical fibre for localization sensor (2006) J. Phys., 137, pp. 157-160Passaro, D., Foroni, M., Poli, F., Cucinotta, A., Selleri, S., Laegsgaard, J., Bjarklev, A.O., All-silica hollow-core microstructured Bragg fibers for biosensor application (2008) IEEE Sensors J., 8, pp. 1280-1286Chen, C., Laronche, A., Bouwmans, G., Bigot, L., Quiquempois, Y., Albert, J., Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index (2008) Opt. Express, 16, pp. 9645-9653De Oliveira, R.E.P., De Matos, C.J.S., Knight, J.C., Taru, T., Arismar Cerqueira, S., Temperature response of photonic bandgap fibers based on high-index inclusions (2009) Proc. Conf. on Lasers and Electro-OpticsBock, W.J., Chen, J., Eftimov, T., Urbanczyk, W., A photonic crystal fiber sensor for pressure measurements (2006) IEEE Transactions on Instrumentation and Measurement, 55 (4), pp. 1119-1123. , DOI 10.1109/TIM.2006.876591Allsop, T., Kallib, K., Zhoua, K., Laia, Y., Smith, G., Dubova, M., Webba, D.J., Benniona, I., Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors (2008) Opt. Commun., 281, pp. 5092-5096Smolka, S., Barth, M., Benson, O., Highly efficient fluorescence sensing with hollow core photonic crystal fibers (2008) Proc. IEEE LEOS, pp. 181-182Monzon-Hernandez, D., Minkovich, V.P., Villatoro, J., Kreuzer, M.P., Badenes, G., Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules (2008) Appl. Phys. Lett., 93, p. 081106Humbach, O., Fabian, H., Grzesik, U., Haken, U., Heitmann, W., Analysis of OH absorption bands in synthetic silica (1996) J. Non-Cryst. Solids, 203, pp. 19-26Sanghera, J.S., Shaw, L.B., Agrawal, I.D., Applications of chalcogenide glass optical fibres (2002) C. R. Chim., 5, pp. 873-883Katagiri, T., Matsuura, Y., Miyagi, M., Metal-covered photonic bandgap multilayer for infrared hollow waveguides (2002) Appl. Opt., 41, pp. 7603-7606Shephard, J.D., MacPherson, W.N., Maier, R.R.J., Jones, J.D.C., Hand, D.P., Mohebbi, M., George, A.K., Knight, J.C., Single-mode mid-IR guidance in a hollow-core photonic crystal fiber (2005) Optics Express, 13 (18), pp. 7139-7144. , http://www.opticsexpress.org/view_file.cfm?doc= %24%2A%3C%23%27J0%20%20%0A&id=%25%28%2C3%2BI%5C0%20%0A, DOI 10.1364/OPEX.13.007139Pearce, G., Pottage, J., Bird, D., Roberts, P., Knight, J., Russell, P., Hollow-core PCF for guidance in the mid to far infra-red (2005) Opt. Express, 13, pp. 6937-6946Tonouchi, M., Cutting-edge terahertz technology (2007) Nature Photon., 1, pp. 97-105Jamison, S.P., McCow, R.W., Grischkowsky, D., Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber (2000) Appl. Phys. Lett., 76, pp. 1987-1989Atakaramians, S., Shahraam, A.V., Fischer, B.M., Abbott, D., Monro, T.M., Porous fibers: A novel approach to low loss THz waveguides (2008) Opt. Express, 16, pp. 8845-8854Han, H., Park, H., Cho, M., Kim, J., THz pulse propagation in plastic photonic crystal fiber (2002) Appl. Phys. Lett., 80, pp. 2634-2636Goto, M., Quema, A., Takahashi, H., Ono, S., Sarukura, N., Teflon photonic crystal fiber as terahertz waveguide (2004) Japan. J. Appl. Lett., 43 (2), pp. 317-L319Cho, M., Kim, J., Park, H., Han, Y., Moon, K., Jung, E., Han, H., Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers (2008) Opt. Express, 16, pp. 7-12Wang, K., Mittleman, D.M., Metal wires for terahertz wave guiding (2004) Nature, 432, pp. 376-379Hansen, T.P., Broeng, J., Libori, S.E.B., Knudsen, E., Bjarklev, A., Jensen, J.R., Simonsen, H., Highly birefringent index-guiding photonic crystal fibers (2001) IEEE Photonic. Technol. Lett., 13, pp. 588-590Ren, G., Gong, Y., Shum, P., Yu, X., Hu, J., Wang, G., Chuen, M.O.L., Paulose, V., Low-loss air-core polarization maintaining terahertz fiber (2008) Opt. Express, 16, pp. 13593-13598Dong, L., Archambault, J.L., Reekie, L., Russell St, P.J., Payne, D.N., Photoinduced absorption change in germanosilicate preforms: Evidence for the color-center model of photosensitivity (1995) Appl. Opt., 34, pp. 3436-3440Williams, D.L., Al, E., (1991) SPIE Proc. Photo. Opt. Instrum. Eng., 29, p. 1516Nodop, D., Rindorf, L., Linke, S., Limpert, J., Tunnermann, A., Long-period gratings written in large-mode area photonic crystal fiber (2008) Appl. Phys., 92, pp. 509-512Rindorf, L., Jensen, J.B., Dufva, M., Pedersen, L.H., Høiby, P.E., Bang, O., Photonic crystal fiber long-period gratings for biochemical sensing (2006) Opt. Express, 14, pp. 8224-8231Kuhlmey, B.T., Luan, F., Fu, L., Yeom, D., Eggleton, B.J., Wang, A., Knight, J.C., Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings (2008) Opt. Expr

    A low-profile and ultra-wideband printed antenna with a 176% bandwidth

    No full text
    Abstract This work reports the development of a simple, low-profile and ultra-wideband printed antenna. The proposed antenna is based on a truncated ground plane and an impedance matching structure formed by a round junction and two chamfers; these modifications significantly increase the antenna frequency bandwidth compared to conventional microstrip antennas and ultra-wideband printed monopoles published in literature. An antenna prototype was fabricated using an Arlon DiClad 880 substrate with an electrical permittivity of 2.2. A bandwidth of 176% was attained at a central frequency of 14.9 GHz (ranging from 1.79 to 28.02 GHz). Numerical simulations and experimental results of the antenna's radiation pattern are also reported and exhibit good agreement. To the best of our knowledge, this is the widest bandwidth from a printed antenna that has been published in the literature

    Material Characterization and Propagation Analysis of mm-Waves Indoor Networks

    No full text
    Abstract This paper reports detailed propagation analyses of mm-wave indoor networks based numerical simulations of the wireless coverage and measurements of the propagation coefficient at 28 and 38 GHz. Additionally, material characterization of typical buildings materials used in constructions are presented, including: common brick (with and without electrical installations); plaster walls; glazing, Eucatex panels; wooden doors. The computational simulations have been performed using Altair WinPropâ„¢ software in order to predict path loss in LOS (Line-of-Sight) and NLOS (Non-Line-of-Sight) environments. The obtained results contributes to the planning of the fifth Generation of mobile communications networks (5G), operating in mm-waves

    Birefringence Properties Of Hybrid Photonic Crystal Fibers

    No full text
    We present a fabrication and an experimental investigation of the birefringent properties of a Highly Birefrigent Hybrid Photonic Crystal Fiber. Polarization dependent loss as high as 21 dB is experimentally obtained on the photonic bandgap edges. ©2009IEEE.804805Knight, J.C., Photonic Crystal Fibres (2003) Nature, 424, pp. 847-851. , AugustArismar Cerqueira Jr., S., Luan, F., Cordeiro, C.M.B., George, A.K., Knight, J.C., Hybrid photonic crystal fiber (2006) Optics Express, 14, pp. 926-931Arismar Cerqueira Jr., S., Cordeiro, C.M.B., Biancalana, F., Roberts, P.J., Hernandez-Figueroa, H.E., Brito Cruz, C.H., Hybrid photonic crystal fiber,Nonlinear interaction between two different photonic bandgaps of a Hybrid Photonic Crystal Fiber (2008) Optics Letters, 33. , SeptemberSchreiber, T., Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity (2005) Optics Express, 13, pp. 7621-763
    • …
    corecore