2 research outputs found

    Light-induced sulfur transport inside single-walled carbon nanotubes

    Get PDF
    This article belongs to the Section 2D and Carbon Nanomaterials.Filling of single-walled carbon nanotubes (SWCNTs) and extraction of the encapsulated species from their cavities are perspective treatments for tuning the functional properties of SWCNT-based materials. Here, we have investigated sulfur-modified SWCNTs synthesized by the ampoule method. The morphology and chemical states of carbon and sulfur were analyzed by transmission electron microscopy, Raman scattering, thermogravimetric analysis, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopies. Successful encapsulation of sulfur inside SWCNTs cavities was demonstrated. The peculiarities of interactions of SWCNTs with encapsulated and external sulfur species were analyzed in details. In particular, the donor–acceptor interaction between encapsulated sulfur and host SWCNT is experimentally demonstrated. The sulfur-filled SWCNTs were continuously irradiated in situ with polychromatic photon beam of high intensity. Comparison of X-ray spectra of the samples before and after the treatment revealed sulfur transport from the interior to the surface of SWCNTs bundles, in particular extraction of sulfur from the SWCNT cavity. These results show that the moderate heating of filled nanotubes could be used to de-encapsulate the guest species tuning the local composition, and hence, the functional properties of SWCNT-based materials.This work was supported by the Russian Science Foundation (Project 18-72-00017), the bilateral Program “Russian-Germany Laboratory at BESSY II” in the part of XPS and C K-edge NEXAFS measurements, and shared research center SSTRC on the basis of the Novosibirsk VEPP-4 - VEPP-2000 complex at BINP SB RAS, using equipment supported by project RFMEFI62119X0022 in the part of S K-edge NEXAFS measurements. R.A. acknowledges the support from the Spanish Ministerio de Economia y Competitividad (MAT2016-79776-P, AEI/FEDER, EU), from the European Union’s Horizon 2020 programme under the project “ESTEEM3” (823717) and from the Government of Aragon and the European Social Fund under the project “Construyendo Europa desde Aragon” 2014–2020 (grant number E13_17R, FEDER, EU).Peer reviewe

    Peatland Development, Vegetation History, Climate Change and Human Activity in the Valdai Uplands (Central European Russia) during the Holocene: A Multi-Proxy Palaeoecological Study

    No full text
    Peatlands are remarkable for their specific biodiversity, crucial role in carbon cycling and climate change. Their deposits preserve organism remains that can be used to reconstruct long-term ecosystem and environmental changes as well as human impact in the prehistorical and historical past. This study presents a new multi-proxy reconstruction of the peatland and vegetation development investigating climate dynamics and human impact at the border between mixed and boreal forests in the Valdai Uplands (the East European Plain, Russia) during most of the Holocene. We performed plant macrofossil, pollen, testate amoeba, Cladocera, diatom, peat humification, loss on ignition, carbon and nitrogen content, δ13C and δ15N analyses supported by radiocarbon dating of the peat deposits from the Krivetskiy Mokh mire. The results of the study indicate that the wetland ecosystem underwent a classic hydroserial succession from a lake (8300 BC–900 BC) terrestrialized through a fen (900 BC–630 AD) to an ombrotrophic bog (630 AD–until present) and responded to climate changes documented over the Holocene. Each stage was associated with clear changes in local diversity of organisms responding mostly to autogenic successional changes during the lake stage and to allogenic factors at the fen-bog stage. The latter can be related to increased human impact and greater sensitivity of peatland ecosystems to external, especially climatic, drivers as compared to lakes
    corecore