23 research outputs found

    Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    Get PDF
    BACKGROUND: Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. METHODS: Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. RESULTS: The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). CONCLUSION: We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer

    Specificity and heregulin regulation of Ebp1 (ErbB3 binding protein 1) mediated repression of androgen receptor signalling

    Get PDF
    Although ErbB receptors have been implicated in the progression of prostate cancer, little is known about proteins that may mediate their interactions with the androgen receptor (AR). Ebp1, a protein cloned via its association with the ErbB3 receptor, binds the AR and inhibits androgen-regulated transactivation of wild-type AR in COS cells. As the complement of coregulators in different cells are important for AR activity, we determined the effect of Ebp1 on AR function in prostate cancer cell lines. In addition, we examined the regulation of Ebp1 function by the ErbB3/4 ligand heregulin (HRG). In this study, we demonstrate, using several natural AR-regulated promoters, that Ebp1 repressed transcriptional activation of wild-type AR in prostate cancer cell lines. Downregulation of Ebp1 expression in LNCaP cells using siRNA resulted in activation of AR in the absence of androgen. Ebp1 associated with ErbB3 in LNCaP cells in the absence of HRG, but HRG induced the dissociation of Ebp1 from ErbB3. In contrast, HRG treatment enhanced both the association of Ebp1 with AR and also the ability of Ebp1 to repress AR transactivation. These studies suggest that Ebp1 is an AR corepressor whose biological activity can be regulated by the ErbB3 ligand, HRG

    LNCaP Atlas: Gene expression associated with in vivo progression to castration-recurrent prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no cure for castration-recurrent prostate cancer (CRPC) and the mechanisms underlying this stage of the disease are unknown.</p> <p>Methods</p> <p>We analyzed the transcriptome of human LNCaP prostate cancer cells as they progress to CRPC <it>in vivo </it>using replicate LongSAGE libraries. We refer to these libraries as the LNCaP atlas and compared these gene expression profiles with current suggested models of CRPC.</p> <p>Results</p> <p>Three million tags were sequenced using <it>in vivo </it>samples at various stages of hormonal progression to reveal 96 novel genes differentially expressed in CRPC. Thirty-one genes encode proteins that are either secreted or are located at the plasma membrane, 21 genes changed levels of expression in response to androgen, and 8 genes have enriched expression in the prostate. Expression of 26, 6, 12, and 15 genes have previously been linked to prostate cancer, Gleason grade, progression, and metastasis, respectively. Expression profiles of genes in CRPC support a role for the transcriptional activity of the androgen receptor (<it>CCNH, CUEDC2, FLNA, PSMA7</it>), steroid synthesis and metabolism (<it>DHCR24, DHRS7</it>, <it>ELOVL5, HSD17B4</it>, <it>OPRK1</it>), neuroendocrine (<it>ENO2, MAOA, OPRK1, S100A10, TRPM8</it>), and proliferation (<it>GAS5</it>, <it>GNB2L1</it>, <it>MT-ND3</it>, <it>NKX3-1</it>, <it>PCGEM1</it>, <it>PTGFR</it>, <it>STEAP1</it>, <it>TMEM30A</it>), but neither supported nor discounted a role for cell survival genes.</p> <p>Conclusions</p> <p>The <it>in vivo </it>gene expression atlas for LNCaP was sequenced and support a role for the androgen receptor in CRPC.</p
    corecore