25 research outputs found

    TREND ANALYSIS OF RAINFALL, TEMPERATURE AND RUNOFF DATA: A CASE STUDY OF RANGOON WATERSHED IN NEPAL

    Get PDF
    Purpose: The study has been carried out to investigate and assess the significance of the potential trend of three variables viz. rainfall, temperature and runoff over the Rangoon watershed in Dadeldhura district of Nepal.Methodology: In this study, trend analysis has been carried out on monthly, seasonal and annual basis using the data period between 1979 to 2010 for rainfall and temperature and 1967 to 1996 for runoff. Mann-Kendall test and Senā€™s slope estimate test were applied to identify the existing trend direction and Senā€™s slope estimator test were used to detect the trend direction and magnitude of change over time.Main findings: The most important findings are, i) There is warming trends over the Rangoon watershed as Mann-Kendall statistic (Z-value) for most of the maximum temperature values are positive, ii) Rainfall and runoff affected by fluctuations every year though the annual rainfall showing a rising trend whereas runoff showing a falling trend. The rainfall seasonal trend analysis indicates that monsoon and post-monsoon period showed a positive rainfall trend with z statistics of +1.93, and +1.12 respectively, whereas pre-monsoon and winter seasons showed a negative trend with z statistics of -1.02, and -0.54 respectively. However, the annual rainfall in the Rangoon watershed showed a positive trend with a z value of +1.70.Importance of this study: This case study has been undertaken to investigate the trends of important climatic variables viz. rainfall, temperature which have a direct impact on the agriculture of the region.Originality / Novelty of study: This is an original research work undertaken under the M. Tech programme during 2016-17 at IIT Roorkee by the scholar Er. Amar Bahadur Pal from Nepal.

    Methylotroph bacteria and cellular metabolite carotenoid alleviate ultraviolet radiation-driven abiotic stress in plants

    Get PDF
    Increasing UV radiation in the atmosphere due to the depletion of ozone layer is emerging abiotic stress for agriculture. Although plants have evolved to adapt to UV radiation through different mechanisms, but the role of phyllosphere microorganisms in counteracting UV radiation is not well studied. The current experiment was undertaken to evaluate the role of phyllosphere Methylobacteria and its metabolite in the alleviation of abiotic stress rendered by ultraviolet (UV) radiation. A potential pink pigmenting methylotroph bacterium was isolated from the phylloplane of the rice plant (oryzae sativa). The 16S rRNA gene sequence of the bacterium was homologous to the Methylobacter sp. The isolate referred to as Methylobacter sp N39, produced beta-carotene at a rate (Ī¼g mlā€“1 dā€“1) of 0.45ā€“3.09. Biosynthesis of beta-carotene was stimulated by brief exposure to UV for 10 min per 2 days. Carotenoid biosynthesis was predicted as y = 3.09 Ɨ incubation period + 22.151 (r2 = 0.90). The carotenoid extract of N39 protected E. coli from UV radiation by declining its death rate from 14.67% minā€“1 to 4.30% minā€“1 under UV radiation. Application of N39 cells and carotenoid extract also protected rhizobium (Bradyrhizobium japonicum) cells from UV radiation. Scanning electron microscopy indicated that the carotenoid extracts protected E. coli cells from UV radiation. Foliar application of either N39 cells or carotenoid extract enhanced the plantā€™s (Pigeon pea) resistance to UV irradiation. This study highlight that Methylobacter sp N39 and its carotenoid extract can be explored to manage UV radiation stress in agriculture

    SREBP2 activation induces hepatic long-chain Acyl-CoA synthetase 1 (ACSL1) expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter

    No full text
    Long-chain acyl-CoA synthetase 1 (ACSL1) plays a key role in fatty acid metabolism. To identify novel transcriptional modulators of ACSL1, we examined ACSL1 expression in liver tissues of hamsters fed a normal diet, a high fat diet, or a high cholesterol and high fat diet (HCHFD). Feeding hamsters HCHFD markedly reduced hepatic Acsl1 mRNA and protein levels as well as acyl-CoA synthetase activity. Decreases in Acsl1 expression strongly correlated with reductions in hepatic Srebp2 mRNA level and mature Srebp2 protein abundance. Conversely, administration of rosuvastatin (RSV) to hamsters increased hepatic Acsl1 expression. These new findings were reproduced in mice treated with RSV or fed the HCHFD. Furthermore, the RSV induction of acyl-CoA activity in mouse liver resulted in increases in plasma and hepatic cholesterol ester concentrations and reductions in free cholesterol amounts. Investigations on different ACSL1 transcript variants in HepG2 cells revealed that the mRNA expression of C-ACSL1 was specifically regulated by the sterol regulatory element (SRE)-binding protein (SREBP) pathway, and RSV treatment increased the C-ACSL1 abundance from a minor mRNA species to an abundant transcript. We analyzed 5-flanking sequence of exon 1C of the human ACSL1 gene and identified one putative SRE site. By performing a promoter activity assay and DNA binding assays, we firmly demonstrated the key role of this SRE motif in SREBP2-mediated activation of C-ACSL1 gene transcription. Finally, we demonstrated that knockdown of endogenous SREBP2 in HepG2 cells lowered ACSL1 mRNA and protein levels. Altogether, this work discovered an unprecedented link between ACSL1 and SREBP2 via the specific regulation of the C-ACSL1 transcript

    CETP inhibitors downregulate hepatic LDL receptor and PCSK9 expression in vitro and in vivo through a SREBP2 dependent mechanism

    No full text
    Background: CETP inhibitors block the transfer of cholesteryl ester from HDL-C to VLDL-C and LDL-C, thereby raising HDL-C and lowering LDL-C. In this study, we explored the effect of CETP inhibitors on hepatic LDL receptor (LDLR) and PCSK9 expression and further elucidated the underlying regulatory mechanism.Results: We first examined the effect of anacetrapib (ANA) and dalcetrapib (DAL) on LDLR and PCSK9 expression in hepatic cells in vitro. ANA exhibited a dose-dependent inhibition on both LDLR and PCSK9 expression in CETP-positive HepG2 cells and human primary hepatocytes as well as CETP-negative mouse primary hepatocytes (MPH). Moreover, the induction of LDLR protein expression by rosuvastatin in MPH was blunted by cotreatment with ANA. In both HepG2 and MPH ANA treatment reduced the amount of mature form of SREBP2 (SREBP2-M). In vivo, oral administration of ANA to dyslipidemic C57BL/6J mice at a daily dose of 50 mg/kg for 1 week elevated serum total cholesterol by approximately 24.5% (p < 0.05%) and VLDL-C by 70% (p < 0.05%) with concomitant reductions of serum PCSK9 and liver LDLR/SREBP2-M protein. Finally, we examined the in vitro effect of two other strong CETP inhibitors evacetrapib and torcetrapib on LDLR/PCSK9 expression and observed a similar inhibitory effect as ANA in a concentration range of 1-10 mu M.Conclusion: Our study revealed an unexpected off-target effect of CETP inhibitors that reduce the mature form of SREBP2, leading to attenuated transcription of hepatic LDLR and PCSK9. This negative regulation of SREBP pathway by ANA manifested in mice where CETP activity was absent and affected serum cholesterol metabolism. Published by Elsevier Ireland Ltd

    A novel posttranscriptional mechanism for dietary cholesterol-mediated suppression of liver LDL receptor expression

    No full text
    It is well-established that over-accumulation of dietary cholesterol in the liver inhibits sterol-regulatory element binding protein (SREBP)-mediated LDL receptor (LDLR) gene transcription leading to a reduced hepatic LDLR mRNA level in hypercholesterolemic animals. However, it is unknown whether elevated cholesterol levels can elicit a cellular response to increase LDLR mRNA turnover to further repress LDLR expression in liver tissue. In the current study, we examined the effect of a high cholesterol diet on the hepatic expression of LDLR mRNA binding proteins in three different animal models and in cultured hepatic cells. Our results demonstrate that high cholesterol feeding specifically elevates the hepatic expression of LDLR mRNA decay promoting factor heterogeneous nuclear ribonucleoprotein (HNRNP) D without affecting expressions of other LDLR mRNA binding proteins in vivo and in vitro. Employing the approach of adenovirus-mediated gene knockdown, we further show that depletion of HNRNPD in the liver results in a marked reduction of serum LDL-cholesterol and a substantial increase in liver LDLR expression in hyperlipidemic mice. Additional studies of gene knockdown in albumin-luciferase-untranslated region (UTR) transgenic mice provide strong evidence supporting the essential role of 3'UTR in HNRNPD-mediated LDLR mRNA degradation in liver tissue. Altogether, this work identifies a novel post-transcriptional regulatory mechanism by which dietary cholesterol inhibits liver LDLR expression via inducing HNRNPD to accelerate LDLR mRNA degradation

    PPARĪ“ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro

    No full text
    The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARĪ“ but not PPARĪ± in HCHFD fed hamsters. To explore a role of PPARĪ“ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARĪ“ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARĪ“ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARĪ“ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARĪ“-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells

    Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation

    No full text
    ACSL4 is a member of the long-chain acyl-CoA synthetase (ACSL) family with a marked preference for arachidonic acid (AA) as its substrate. Although an association between elevated levels of ACSL4 and hepatosteatosis has been reported, the function of ACSL4 in hepatic FA metabolism and the regulation of its functional expression in the liver remain poorly defined. Here we provide evidence that AA selectively downregulates ACSL4 protein expression in hepatic cells. AA treatment decreased the half-life of ACSL4 protein in HepG2 cells by approximately 4-fold (from 17.3 +/- 1.8 h to 4.2 +/- 0.4 h) without causing apoptosis. The inhibitory action of AA on ACSL4 protein stability could not be prevented by rosiglitazone or inhibitors that interfere with the cellular pathways involved in AA metabolism to biologically active compounds. In contrast, treatment of cells with inhibitors specific for the proteasomal degradation pathway largely prevented the AA-induced ACSL4 degradation. We further show that ACSL4 is intrinsically ubiquitinated and that AA treatment can enhance its ubiquitination. Collectively, our studies have identified a novel substrate-induced posttranslational regulatory mechanism by which AA downregulates ACSL4 protein expression in hepatic cells
    corecore