3 research outputs found

    Étude de la propagation acoustique en milieu complexe par des réseaux de neurones profonds

    Get PDF
    Abstract : Predicting the propagation of aerocoustic noise is a challenging task in the presence of complex mean flows and geometry installation effects. The design of future quiet propul- sion systems requires tools that are able to perform many accurate evaluations with a low computational cost. Analytical models or hybrid numerical approaches have tradition- ally been employed for that purpose. However, such methods are typically constrained by simplifying hypotheses that are not easily relaxed. Thus, the main objective of this thesis is to develop and validate novel methods for the fast and accurate prediction of aeroacoustic propagation in complex mean flows and geometries. For that, data-driven deep convolutional neural networks acting as auto-regressive spatio-temporal predictors are considered. These surrogates are trained on high-fidelity data, generated by direct aeroacoustic numerical solvers. Such datasets are able to model complex flow phenomena, along with complex geometrical parameters. The neural network is designed to substitute the high-fidelity solver at a much lower computational cost once the training is finished, while predicting the time-domain acoustic propagation with sufficient accuracy. Three test cases of growing complexity are employed to test the approach, where the learned surrogate is compared to analytical and numerical solutions. The first one corresponds to the two-dimensional propagation of Gaussian pulses in closed domains, which allows understanding the fundamental behavior of the employed convolution neural networks. Second, the approach is extended in order to consider a variety of boundary conditions, from non-reflecting to curved reflecting obstacles, including the reflection and scattering of waves at obstacles. This allows the prediction of acoustic propagation in configurations closer to industrial problems. Finally, the effects of complex mean flows is investigated through a dataset of acoustic waves propagating inside sheared flows. These applications highlight the flexibility of the employed data-driven methods using convolutional neural networks. They allow a significant acceleration of the acoustic predictions, while keeping an adequate accuracy and being also able to correctly predict the acoustic propagation outside the range of the training data. For that, prior knowledge about the wave propa- gation physics is included during and after the neural network training phase, allowing an increased control over the error performed by the surrogate. Among this prior knowledge, the conservation of physics quantities and the correct treatment of boundary conditions are identified as key parameters that improve the surrogate predictions.Prédire la propagation du bruit aéroacoustique est une tâche difficile en présence d’écoulements moyens complexes et d’effets géométriques d’installation. La conception des futurs systèmes de propulsion silencieux appelle au développement d’outils capables d’effectuer de nombreuses évaluations avec une faible erreur et un faible coût de calcul. Traditionnellement, des modèles analytiques ou des approches numériques hybrides ont été utilisés à cette fin. Cependant, ces méthodes sont généralement contraintes par des hypothèses simplificatrices qui ne sont pas facilement assouplies. Ainsi, l’objectif principal de cette thèse est de développer et de valider de nouvelles méthodes pour la prédiction rapide et précise de la propagation aéroacoustique dans des écoulements moyens et des géométries complexes. Pour cela, des réseaux de neurones profonds à convolution, entraînés sur des données, et agissant comme prédicteurs spatio-temporels sont considérés. Ces modèles par substitution sont entraînés sur des données de haute fidélité, générées par des solveurs numériques aérocoustiques directs. De telles bases de données sont capables de modéliser des phénomènes d’écoulement, ainsi que des paramètres géométriques complexes. Le réseau de neurones est conçu pour remplacer le solveur haute fidélité à un coût de calcul beaucoup plus faible une fois la phase d’entraînement terminée, tout en prédisant la propagation acoustique dans le domaine temporel avec une précision suffisante. Trois cas de test, de complexité croissante, sont utilisés pour tester l’approche, où le substitut appris est comparé à des solutions analytiques et numériques. Le premier cas correspond à la propagation acoustique bidimensionnelle dans des domaines fermés, où des sources impulsionnelles Gaussiennes sont considérées. Ceci permet de comprendre le comportement fondamental des réseaux de neurones à convolution étudiés. Deuxièmement, l’approche est étendue afin de prendre en compte une variété de conditions aux limites, notamment des conditions aux limites non réfléchissantes et des obstacles réfléchissants de géométrie arbitraire, modélisant la réflexion et la diffusion des ondes acoustiques sur ces obstacles. Cela permet de prédire la propagation acoustique dans des configurations plus proches des problématiques industrielles. Enfin, les effets des écoulements moyens complexes sont étudiés à travers une base de données d’ondes acoustiques qui se propagent à l’intérieur d’écoulements cisaillés. Ces applications mettent en évidence la flexibilité des méthodes basées sur les données, utilisant des réseaux de neurones à convolution. Ils permettent une accélération significative des prédictions acoustiques, tout en gardant une précision adéquate et en étant également capables de prédire correctement la propagation acoustique en dehors de la gamme de paramètres des données d’apprentissage. Pour cela, des connaissances préalables sur la physique de propagation des ondes sont incluses pendant et après la phase d’apprentissage du réseau de neurones, permettant un contrôle accru sur l’erreur effectuée par le substitut. Parmi ces connaissances préalables, la conservation des grandeurs physiques et le traitement correct des conditions aux limites sont identifiés comme des paramètres clés qui améliorent les prédictions du modèle proposé

    Investigating the noise sources of the transonic RAE 2822 airfoil

    Get PDF
    Abstract: A compressible Large Eddy Simulation is performed on the transonic RAE 2822 airfoil, and compared to the baseline simulation of Koch et al. (28th AIAA/CEAS Aeroacoustics Conference, paper AIAA 2022–2816) in order to highlight the main noise source mechanisms. The new simulation employs a new mesh which eliminates a jump in the airfoil surface mesh, located in the supersonic laminar boundary layer region of the suction side. This jump induced some hydrodynamic instability in the suction side boundary layer of the baseline simulation, potentially emitting noise at high-frequencies. The new results show that these instabilities are significantly damped when employing the new refined mesh and are consequently very sensitive to the grid quality. Nonetheless, the acoustic response of the airfoil, calculated using the Ffowcs Williams and Hawkings analogy in its solid formulation, remains similar to the baseline, with a highfrequency hump appearing between 30 and 40 kHz. This shows that this hump is not caused by the hydrodynamic instabilities, therefore confirming the grid independence of the acoustic results.Communication présentée lors du congrès international tenu conjointement par Canadian Society for Mechanical Engineering (CSME) et Computational Fluid Dynamics Society of Canada (CFD Canada), à l’Université de Sherbrooke (Québec), du 28 au 31 mai 2023

    Predicting the propagation of acoustic waves in complex media with deep neural networks

    No full text
    Prédire la propagation du bruit aéroacoustique est une tâche difficile en présence d'écoulements moyens complexes et d'effets d'installation géométriques. La conception des futurs systèmes de propulsion silencieux appelle au développement d'outils capables d'effectuer de nombreuses évaluations avec une faible erreur et un faible coût de calcul. Traditionnellement, des modèles analytiques ou des approches numériques hybrides ont été utilisés à cette fin. Cependant, ces méthodes sont généralement contraintes par des hypothèses simplificatrices qui ne sont pas facilement assouplies. Ainsi, l'objectif principal de cette thèse est de développer et de valider de nouvelles méthodes pour la prédiction rapide et précise de la propagation aéroacoustique dans des écoulements moyens et des géométries complexes. Pour cela, des réseaux de neurones profonds à convolution, entraînés sur des données, et agissant comme prédicteurs spatio-temporel sont considérés. Ces modèles par substitution sont entraînés sur des données de haute fidélité, générées par des solveurs numériques aérocoustiques directs. De telles bases de données sont capables de modéliser des phénomènes d'écoulement, ainsi que des paramètres géométriques complexes. Le réseau de neurones est conçu pour remplacer le solveur haute fidélité à un coût de calcul beaucoup plus faible une fois la phase d'entraînement terminée, tout en prédisant la propagation acoustique dans le domaine temporel avec une précision suffisante. Trois cas de test, de complexité croissante, sont utilisés pour tester l'approche, où le substitut appris est comparé à des solutions analytiques et numériques. Le premier cas correspond à la propagation acoustique bidimensionnelle dans des domaines fermés, où des sources impulsionnelles Gaussiennes sont considérées. Ceci permet de comprendre le comportement fondamental des réseaux de neurones à convolution étudiés. Deuxièmement, l'approche est étendue afin de prendre en compte une variété de conditions aux limites, notamment des conditions aus limites non réfléchissants et des obstacles réfléchissants de géométrie arbitraire, modélisant la réflexion et la diffusion des ondes acoustiques sur ces obstacles. Cela permet de prédire la propagation acoustique dans des configurations plus proches des problématiques industrielles. Enfin, les effets des écoulements moyens complexes sont étudiés à travers une base de données d'ondes acoustiques qui se propagent à l'intérieur d'écoulements cisaillés. Ces applications mettent en évidence la flexibilité des méthodes basées sur les données, utilisant des réseaux de neurones à convolutions. Ils permettent une accélération significative des prédictions acoustiques, tout en gardant une précision adéquate et en étant également capable de prédire correctement la propagation acoustique en dehors du range de paramètres des données d'apprentissage. Pour cela, des connaissances préalables sur la physique de propagation des ondes sont incluses pendant et après la phase d'apprentissage du réseau de neurones, permettant un contrôle accru sur l'erreur effectuée par le substitut. Parmi ces connaissances préalables, la conservation des grandeurs physiques et le traitement correct des conditions aux limites sont identifiés comme des paramètres clés qui améliorent les prédictions du modèle proposé.Predicting the propagation of aerocoustic noise is a challenging task in in the presence of complex mean flows and geometry installation effects. The design of future quiet propulsion systems requires of tools that are able to perform many accurate evaluations with a low computational cost. Analytical models or hybrid numerical approaches have traditionally been employed for that purpose. However, such methods are typically constrained by simplifying hypotheses that are not easily relaxed. Thus, the main objective of this thesis is to develop and validate novel methods for the fast and accurate prediction of aeroacoustic propagation in complex mean flows and geometries. For that, data-driven deep convolutional neural networks acting as auto-regressive spatio-temporal predictors are considered. These surrogates are trained on high-fidelity data, generated by direct aerocoustic numerical solvers. Such datasets are able to model complex flow phenomena, along with complex geometrical parameters. The neural network is designed to substitute the high-fidelity solver at a much lower computational cost once the training is finished, while predicting the time-domain acoustic propagation with sufficient accuracy. Three test cases of growing complexity are employed to test the approach, where the learned surrogate is compared to analytical and numerical solutions. The first one corresponds to the two-dimensional propagation of Gaussian pulses in closed domains, which allows understanding the fundamental behavior of the employed convolution neural networks. Second, the approach is extended in order to consider a variety of boundary conditions, from non-reflecting to curved reflecting obstacles, including the reflection and scattering of waves at obstacles. This allows the prediction of acoustic propagation in configurations closer to industrial problems. Finally, the effects of complex mean flows is investigated through a dataset of acoustic waves propagating inside sheared flows. These applications highlight the flexibility of the employed data-driven methods using convolutional neural networks. They allow a significant acceleration of the acoustic predictions, while keeping an adequate accuracy and being also able to correctly predict the acoustic propagation outside the range of the training data. For that, prior knowledge about the wave propagation physics is included during and after the neural network training phase, allowing an increased control over the error performed by the surrogate. Among this prior knowledge, the conservation of physics quantities and the correct treatment of boundary conditions are identified as key parameters that improve the surrogate predictions
    corecore