2,419 research outputs found

    Computer-aided diagnosis for (123I)FP-CIT imaging: impact on clinical reporting

    Get PDF
    BACKGROUND: For (123I)FP-CIT imaging, a number of algorithms have shown high performance in distinguishing normal patient images from those with disease, but none have yet been tested as part of reporting workflows. This study aims to evaluate the impact on reporters' performance of a computer-aided diagnosis (CADx) tool developed from established machine learning technology. Three experienced (123I)FP-CIT reporters (two radiologists and one clinical scientist) were asked to visually score 155 reconstructed clinical and research images on a 5-point diagnostic confidence scale (read 1). Once completed, the process was then repeated (read 2). Immediately after submitting each image score for a second time, the CADx system output was displayed to reporters alongside the image data. With this information available, the reporters submitted a score for the third time (read 3). Comparisons between reads 1 and 2 provided evidence of intra-operator reliability, and differences between reads 2 and 3 showed the impact of the CADx. RESULTS: The performance of all reporters demonstrated a degree of variability when analysing images through visual analysis alone. However, inclusion of CADx improved consistency between reporters, for both clinical and research data. The introduction of CADx increased the accuracy of the radiologists when reporting (unfamiliar) research images but had less impact on the clinical scientist and caused no significant change in accuracy for the clinical data. CONCLUSIONS: The outcomes for this study indicate the value of CADx as a diagnostic aid in the clinic and encourage future development for more refined incorporation into clinical practice

    Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [¹⁸F]FDG: version 1.0

    Get PDF
    Positron emission tomography (PET) has been widely used in paediatric oncology. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most commonly used radiopharmaceutical for PET imaging. For oncological brain imaging, different amino acid PET radiopharmaceuticals have been introduced in the last years. The purpose of this document is to provide imaging specialists and clinicians guidelines for indication, acquisition, and interpretation of [18F]FDG and radiolabelled amino acid PET in paediatric patients affected by brain gliomas. There is no high level of evidence for all recommendations suggested in this paper. These recommendations represent instead the consensus opinion of experienced leaders in the field. Further studies are needed to reach evidence-based recommendations for the applications of [18F]FDG and radiolabelled amino acid PET in paediatric neuro-oncology. These recommendations are not intended to be a substitute for national and international legal or regulatory provisions and should be considered in the context of good practice in nuclear medicine. The present guidelines/standards were developed collaboratively by the EANM and SNMMI with the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group and the Response Assessment in Paediatric Neuro-Oncology (RAPNO) working group. They summarize also the views of the Neuroimaging and Oncology and Theranostics Committees of the EANM and reflect recommendations for which the EANM and other societies cannot be held responsible

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb−1 of pp collisions at s=13TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5)
    corecore