24 research outputs found
KSHV-Initiated Notch Activation Leads to Membrane-Type-1 Matrix Metalloproteinase-Dependent Lymphatic Endothelial-to-Mesenchymal Transition
SummaryKaposi sarcoma (KS), an angioproliferative disease associated with Kaposi sarcoma herpesvirus (KSHV) infection, harbors a diversity of cell types ranging from endothelial to mesenchymal cells of unclear origin. We developed a three-dimensional cell model for KSHV infection and used it to demonstrate that KSHV induces transcriptional reprogramming of lymphatic endothelial cells to mesenchymal cells via endothelial-to-mesenchymal transition (EndMT). KSHV-induced EndMT was initiated by the viral proteins vFLIP and vGPCR through Notch pathway activation, leading to gain of membrane-type-1 matrix metalloproteinase (MT1-MMP)-dependent invasive properties and concomitant changes in viral gene expression. Mesenchymal markers and MT1-MMP were found codistributed with a KSHV marker in the same cells from primary KS biopsies. Our data explain the heterogeneity of cell types within KS lesions and suggest that KSHV-induced EndMT may contribute to KS development by giving rise to infected, invasive cells while providing the virus a permissive cellular microenvironment for efficient spread
Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans
Clonal hematopoiesis driven by somatic heterozygous TET2 loss is linked to malignant degeneration via consequent aberrant DNA methylation, and possibly to cardiovascular disease via increased cytokine and chemokine expression as reported in mice. Here, we discover a germline TET2 mutation in a lymphoma family. We observe neither unusual predisposition to atherosclerosis nor abnormal pro-inflammatory cytokine or chemokine expression. The latter finding is confirmed in cells from three additional unrelated TET2 germline mutation carriers. The TET2 defect elevates blood DNA methylation levels, especially at active enhancers and cell-type specific regulatory regions with binding sequences of master transcription factors involved in hematopoiesis. The regions display reduced methylation relative to all open chromatin regions in four DNMT3A germline mutation carriers, potentially due to TET2-mediated oxidation. Our findings provide insight into the interplay between epigenetic modulators and transcription factor activity in hematological neoplasia, but do not confirm the putative role of TET2 in atherosclerosis.Peer reviewe
Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12
Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS.Peer reviewe
FinnGen provides genetic insights from a well-phenotyped isolated population
Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10–11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.publishedVersionPeer reviewe
Next-generation sequencing in a large pedigree segregating visceral artery aneurysms suggests potential role of COL4A1/COL4A2 in disease etiology
Abstract
Background: Visceral artery aneurysms (VAAs) can be fatal if ruptured. Although a relatively rare incident, it holds a contemporary mortality rate of approximately 12%. VAAs have multiple possible causes, one of which is genetic predisposition. Here, we present a striking family with seven individuals affected by VAAs, and one individual affected by a visceral artery pseudoaneurysm.
Methods: We exome sequenced the affected family members and the parents of the proband to find a possible underlying genetic defect. As exome sequencing did not reveal any feasible protein-coding variants, we combined whole-genome sequencing of two individuals with linkage analysis to find a plausible non-coding culprit variant. Variants were ranked by the deep learning framework DeepSEA.
Results: Two of seven top-ranking variants, NC_000013.11:g.108154659C>T and NC_000013.11:g.110409638C>T, were found in all VAA-affected individuals, but not in the individual affected by the pseudoaneurysm. The second variant is in a candidate cis-regulatory element in the fourth intron of COL4A2, proximal to COL4A1.
Conclusions: As type IV collagens are essential for the stability and integrity of the vascular basement membrane and involved in vascular disease, we conclude that COL4A1 and COL4A2 are strong candidates for VAA susceptibility genes
Whole-Genome Sequencing Identifies STAT4 as a Putative Susceptibility Gene in Classic Kaposi Sarcoma
Genome-wide association study and meta-analysis in Northern European populations replicate multiple colorectal cancer risk loci
Genome-wide association studies have been successful in elucidating the genetic basis of colorectal cancer (CRC), but there remains unexplained variability in genetic risk. To identify new risk variants and to confirm reported associations, we conducted a genome-wide association study in 1,701 CRC cases and 14,082 cancer-free controls from the Finnish population. A total of 9,068,015 genetic variants were imputed and tested, and 30 promising variants were studied in additional 11,647 cases and 12,356 controls of European ancestry. The previously reported association between the single-nucleotide polymorphism (SNP) rs992157 (2q35) and CRC was independently replicated (p=2.08 x 10(-4); OR, 1.14; 95% CI, 1.06-1.23), and it was genome-wide significant in combined analysis (p=1.50 x 10(-9); OR, 1.12; 95% CI, 1.08-1.16). Variants at 2q35, 6p21.2, 8q23.3, 8q24.21, 10q22.3, 10q24.2, 11q13.4, 11q23.1, 14q22.2, 15q13.3, 18q21.1, 20p12.3 and 20q13.33 were associated with CRC in the Finnish population (false discovery ratePeer reviewe