1,807 research outputs found
Quantum and Classical Glass Transitions in
When performed in the proper low field, low frequency limits, measurements of
the dynamics and the nonlinear susceptibility in the model Ising magnet in
transverse field, , prove the existence
of a spin glass transition for = 0.167 and 0.198. The classical behavior
tracks for the two concentrations, but the behavior in the quantum regime at
large transverse fields differs because of the competing effects of quantum
entanglement and random fields.Comment: 5 pages, 5 figures. Updated figure 3 with corrected calibration
information for thermometr
A comparative study of Gaussian Graphical Model approaches for genomic data
The inference of networks of dependencies by Gaussian Graphical models on
high-throughput data is an open issue in modern molecular biology. In this
paper we provide a comparative study of three methods to obtain small sample
and high dimension estimates of partial correlation coefficients: the
Moore-Penrose pseudoinverse (PINV), residual correlation (RCM) and
covariance-regularized method . We first compare them on simulated
datasets and we find that PINV is less stable in terms of AUC performance when
the number of variables changes. The two regularized methods have comparable
performances but is much faster than RCM. Finally, we present the
results of an application of for the inference of a gene network
for isoprenoid biosynthesis pathways in Arabidopsis thaliana.Comment: 7 pages, 1 figure, RevTex4, version to appear in the proceedings of
1st International Workshop on Pattern Recognition, Proteomics, Structural
Biology and Bioinformatics: PR PS BB 2011, Ravenna, Italy, 13 September 201
From graphs to Euclidean Virtual Worlds: Visualization of 3D Electronic Institutions
In this paper we propose an algorithm for automatic transformation of a graph into a 3D Virtual World and its Euclidean map, using the rectangular dualization technique. The nodes of the initial graph are transformed into rooms, the connecting arcs between nodes determine which rooms have to be placed next to each other and define the positions of the doors connecting those rooms. The proposed algorithm is general enough to be used for automatic generation of 3D Virtual Worlds representation of any planar graph, however, our research is particulary focused on the automatic generation of 3D Electronic Institutions from the Performative Structure graph. Copyright © 2007, Australian Computer Society, Inc
Temperature and ac Effects on Charge Transport in Metallic Arrays of Dots
We investigate the effects of finite temperature, dc pulse, and ac drives on
the charge transport in metallic arrays using numerical simulations. For finite
temperatures there is a finite conduction threshold which decreases linearly
with temperature. Additionally we find a quadratic scaling of the
current-voltage curves which is independent of temperature for finite
thresholds. These results are in excellent agreement with recent experiments on
2D metallic dot arrays. We have also investigated the effects of an ac drive as
well as a suddenly applied dc drive. With an ac drive the conduction threshold
decreases for fixed frequency and increasing amplitude and saturates for fixed
amplitude and increasing frequency. For sudden applied dc drives below
threshold we observe a long time power law conduction decay.Comment: 6 pages, 7 postscript figure
Whole genome sequencing for mutation discovery in a single case of lysosomal storage disease (MPS type 1) in the dog.
Mucopolysaccharidosis (MPS) is a metabolic storage disorder caused by the deficiency of any lysosomal enzyme required for the breakdown of glycosaminoglycans. A 15-month-old Boston Terrier presented with clinical signs consistent with lysosomal storage disease including corneal opacities, multifocal central nervous system disease and progressively worsening clinical course. Diagnosis was confirmed at necropsy based on histopathologic evaluation of multiple organs demonstrating accumulation of mucopolysaccharides. Whole genome sequencing was used to uncover a frame-shift insertion affecting the alpha-L-iduronidase (IDUA) gene (c.19_20insCGGCCCCC), a mutation confirmed in another Boston Terrier presented 2 years later with a similar clinical picture. Both dogs were homozygous for the IDUA mutation and shared coat colors not recognized as normal for the breed by the American Kennel Club. In contrast, the mutation was not detected in 120 unrelated Boston Terriers as well as 202 dogs from other breeds. Recent inbreeding to select for recessive and unusual coat colors may have concentrated this relatively rare allele in the breed. The identification of the variant enables ante-mortem diagnosis of similar cases and selective breeding to avoid the spread of this disease in the breed. Boston Terriers carrying this variant represent a promising model for MPS I with neurological abnormalities in humans
Dynamic rotor mode in antiferromagnetic nanoparticles
We present experimental, numerical, and theoretical evidence for a new mode
of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering
experiments on 8 nm particles of hematite display a loss of diffraction
intensity with temperature, the intensity vanishing around 150 K. However, the
signal from inelastic neutron scattering remains above that temperature,
indicating a magnetic system in constant motion. In addition, the precession
frequency of the inelastic magnetic signal shows an increase above 100 K.
Numerical Langevin simulations of spin dynamics reproduce all measured neutron
data and reveal that thermally activated spin canting gives rise to a new type
of coherent magnetic precession mode. This "rotor" mode can be seen as a
high-temperature version of superparamagnetism and is driven by exchange
interactions between the two magnetic sublattices. The frequency of the rotor
mode behaves in fair agreement with a simple analytical model, based on a high
temperature approximation of the generally accepted Hamiltonian of the system.
The extracted model parameters, as the magnetic interaction and the axial
anisotropy, are in excellent agreement with results from Mossbauer
spectroscopy
Quantum and classical relaxation in the proton glass
The hydrogen-bond network formed from a crystalline solution of ferroelectric RbH_2PO_4 and antiferroelectric NH_4H_2PO_4 demonstrates glassy behavior, with proton tunneling the dominant mechanism for relaxation at low temperature. We characterize the dielectric response over seven decades of frequency and quantitatively fit the long-time relaxation by directly measuring the local potential energy landscape via neutron Compton scattering. The collective motion of protons rearranges the hydrogen bonds in the network. By analogy with vortex tunneling in superconductors, we relate the logarithmic decay of the polarization to the quantum-mechanical action
Cholesterol Metabolism and Its Regulation by Functional Foods
Currently, obesity is considered an epidemic due to the disruptions it causes to health, highlighting the incensement in cardiovascular diseases associated with cholesterol and low-density lipoprotein (LDL) high concentrations. However, cholesterol is also involved in various metabolic and structural functions vital to human biology. This homeostasis can be modified by external factors such as medications or by internal factors such as diseases or metabolic changes generated by the type of diet at which each person is exposed.In this sense, the research points to the knowledge of functional foods, which provide beneficial health effects and prevent the risk of disease. It has been reported that hypocholesterolemic type bioactive peptides obtained by enzymatic hydrolysis of various seeds such as soybeans, rice and sunflower. A similar effect is observed with unsaturated fatty acids, which have antithrombotic and antiarrhythmic effects, prevent atherosclerosis, contribute to decrease blood pressure and reduce the concentration of triglycerides, total cholesterol and lipoproteins of very low-density lipoprotein (VLDL) in plasma. Therefore, these compounds incorporated in foods are considered functional, since its bioactive potential could be used to prevent cardiovascular disease
Intersection types for unbind and rebind
We define a type system with intersection types for an extension of
lambda-calculus with unbind and rebind operators. In this calculus, a term with
free variables, representing open code, can be packed into an "unbound" term,
and passed around as a value. In order to execute inside code, an unbound term
should be explicitly rebound at the point where it is used. Unbinding and
rebinding are hierarchical, that is, the term can contain arbitrarily nested
unbound terms, whose inside code can only be executed after a sequence of
rebinds has been applied. Correspondingly, types are decorated with levels, and
a term has type decorated with k if it needs k rebinds in order to reduce to a
value. With intersection types we model the fact that a term can be used
differently in contexts providing different numbers of unbinds. In particular,
top-level terms, that is, terms not requiring unbinds to reduce to values,
should have a value type, that is, an intersection type where at least one
element has level 0. With the proposed intersection type system we get
soundness under the call-by-value strategy, an issue which was not resolved by
previous type systems.Comment: In Proceedings ITRS 2010, arXiv:1101.410
Nyquist method for Wigner-Poisson quantum plasmas
By means of the Nyquist method, we investigate the linear stability of
electrostatic waves in homogeneous equilibria of quantum plasmas described by
the Wigner-Poisson system. We show that, unlike the classical Vlasov-Poisson
system, the Wigner-Poisson case does not necessarily possess a Penrose
functional determining its linear stability properties. The Nyquist method is
then applied to a two-stream distribution, for which we obtain an exact,
necessary and sufficient condition for linear stability, as well as to a
bump-in-tail equilibrium.Comment: 6 figure
- …
