146 research outputs found

    Forensic microbiology reveals that Neisseria animaloris infections in harbour porpoises follow traumatic injuries by grey seals.

    Get PDF
    Neisseria animaloris is considered to be a commensal of the canine and feline oral cavities. It is able to cause systemic infections in animals as well as humans, usually after a biting trauma has occurred. We recovered N. animaloris from chronically inflamed bite wounds on pectoral fins and tailstocks, from lungs and other internal organs of eight harbour porpoises. Gross and histopathological evidence suggest that fatal disseminated N. animaloris infections had occurred due to traumatic injury from grey seals. We therefore conclude that these porpoises survived a grey seal predatory attack, with the bite lesions representing the subsequent portal of entry for bacteria to infect the animals causing abscesses in multiple tissues, and eventually death. We demonstrate that forensic microbiology provides a useful tool for linking a perpetrator to its victim. Moreover, N. animaloris should be added to the list of potential zoonotic bacteria following interactions with seals, as the finding of systemic transfer to the lungs and other tissues of the harbour porpoises may suggest a potential to do likewise in humans

    Identification of Streptococcus pneumoniae by a real-time PCR assay targeting SP2020.

    Get PDF
    Real-time PCR targeting lytA (the major autolysin gene) and piaB (permease gene of the pia ABC transporter) are currently used as the gold-standard culture-independent assays for Streptococcus pneumoniae identification. We evaluated the performance of a new real-time PCR assay - targeting SP2020 (putative transcriptional regulator gene) - and compared its performance with the assays previously described. A collection of 150 pneumococci, 433 non-pneumococci and 240 polymicrobial samples (obtained from nasopharynx, oropharynx, and saliva; 80 from each site) was tested. SP2020 and lytA-CDC assays had the best performance (sensitivity of 100% for each compared to 95.3% for piaB). The specificity for lytA and piaB was 99.5% and for SP2020 was 99.8%. Misidentifications occurred for the three genes: lytA, piaB and SP2020 were found in non-pneumococcal strains; piaB was absent in some pneumococci including a serotype 6B strain. Combining lytA and SP2020 assays resulted in no misidentifications. Most polymicrobial samples (88.8%) yielded concordant results for the three molecular targets. The remaining samples seemed to contain non-typeable pneumococci (0.8%), and non-pneumococci positive for lytA (1.7%) or SP2020 (8.7%). We propose that combined detection of both lytA-CDC and SP2020 is a powerful strategy for the identification of pneumococcus either in pure cultures or in polymicrobial samples

    Evolution of Streptococcus pneumoniae and Its Close Commensal Relatives

    Get PDF
    Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial killers worldwide. Population genetic analysis of 118 strains, supported by demonstration of a distinct cell wall carbohydrate structure and competence pheromone sequence signature, shows that S. pneumoniae is one of several hundred evolutionary lineages forming a cluster separate from Streptococcus oralis and Streptococcus infantis. The remaining lineages of this distinct cluster are commensals previously collectively referred to as Streptococcus mitis and each represent separate species by traditional taxonomic standard. Virulence genes including the operon for capsule polysaccharide synthesis and genes encoding IgA1 protease, pneumolysin, and autolysin were randomly distributed among S. mitis lineages. Estimates of the evolutionary age of the lineages, the identical location of remnants of virulence genes in the genomes of commensal strains, the pattern of genome reductions, and the proportion of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most of the lineages gradually lost the majority of genes determining virulence and became genetically distinct due to sexual isolation in their respective hosts

    Inhibition of Competence Development, Horizontal Gene Transfer and Virulence in Streptococcus pneumoniae by a Modified Competence Stimulating Peptide

    Get PDF
    Competence stimulating peptide (CSP) is a 17-amino acid peptide pheromone secreted by Streptococcus pneumoniae. Upon binding of CSP to its membrane-associated receptor kinase ComD, a cascade of signaling events is initiated, leading to activation of the competence regulon by the response regulator ComE. Genes encoding proteins that are involved in DNA uptake and transformation, as well as virulence, are upregulated. Previous studies have shown that disruption of key components in the competence regulon inhibits DNA transformation and attenuates virulence. Thus, synthetic analogues that competitively inhibit CSPs may serve as attractive drugs to control pneumococcal infection and to reduce horizontal gene transfer during infection. We performed amino acid substitutions on conserved amino acid residues of CSP1 in an effort to disable DNA transformation and to attenuate the virulence of S. pneumoniae. One of the mutated peptides, CSP1-E1A, inhibited development of competence in DNA transformation by outcompeting CSP1 in time and concentration-dependent manners. CSP1-E1A reduced the expression of pneumococcal virulence factors choline binding protein D (CbpD) and autolysin A (LytA) in vitro, and significantly reduced mouse mortality after lung infection. Furthermore, CSP1-E1A attenuated the acquisition of an antibiotic resistance gene and a capsule gene in vivo. Finally, we demonstrated that the strategy of using a peptide inhibitor is applicable to other CSP subtype, including CSP2. CSP1-E1A and CSP2-E1A were able to cross inhibit the induction of competence and DNA transformation in pneumococcal strains with incompatible ComD subtypes. These results demonstrate the applicability of generating competitive analogues of CSPs as drugs to control horizontal transfer of antibiotic resistance and virulence genes, and to attenuate virulence during infection by S. pneumoniae

    Functional Analysis of the Cytoskeleton Protein MreB from Chlamydophila pneumoniae

    Get PDF
    In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae

    Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films

    Get PDF
    Magnetron sputtering techniques were used to prepare molecularly smooth titanium thin films possessing an average roughness between 0.18 nm and 0.52 nm over 5 μm × 5 μm AFM scanning areas. Films with an average roughness of 0.52 nm or lower were found to restrict the extent of P. aeruginosa cell attachment, with less than 0.5% of all available cells being retained on the surface. The attachment of S. aureus cells was also limited on films with an average surface roughness of 0.52 nm, however they exhibited a remarkable propensity for attachment on the nano-smoother 0.18 nm average surface roughness films, with the attachment density being almost twice as great as that observed on the nano-rougher film. The difference in attachment behaviour can be attributed to the difference in morphology of the rod-shaped P. aeruginosa compared to the spherical S. aureus cells

    Significant variation in transformation frequency in Streptococcus pneumoniae

    Get PDF
    The naturally transformable bacterium Streptococcus pneumoniae is able to take up extracellular DNA and incorporate it into its genome. Maintaining natural transformation within a species requires that the benefits of transformation outweigh its costs. Although much is known about the distribution of natural transformation among bacterial species, little is known about the degree to which transformation frequencies vary within species. Here we find that there is significant variation in transformation frequency between strains of Streptococcus pneumoniae isolated from asymptomatic carriage, and that this variation is not concordant with isolate genetic relatedness. Polymorphism in the signalling system regulating competence is also not causally related to differences in transformation frequency, although this polymorphism does influence the degree of genetic admixture experienced by bacterial strains. These data suggest that bacteria can evolve new transformation frequencies over short evolutionary timescales. This facility may permit cells to balance the potential costs and benefits of transformation by regulating transformation frequency in response to environmental conditions

    Optimization of the doxycycline-dependent simian immunodeficiency virus through in vitro evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaccination of macaques with live attenuated simian immunodeficiency virus (SIV) provides significant protection against the wild-type virus. The use of a live attenuated human immunodeficiency virus (HIV) as AIDS vaccine in humans is however considered unsafe because of the risk that the attenuated virus may accumulate genetic changes during persistence and evolve to a pathogenic variant. We earlier presented a conditionally live HIV-1 variant that replicates exclusively in the presence of doxycycline (dox). Replication of this vaccine strain can be limited to the time that is needed to provide full protection through transient dox administration. Since the effectiveness and safety of such a conditionally live virus vaccine should be tested in macaques, we constructed a similar dox-dependent SIV variant. The Tat-TAR transcription control mechanism in this virus was inactivated through mutation and functionally replaced by the dox-inducible Tet-On regulatory system. This SIV-rtTA variant replicated in a dox-dependent manner in T cell lines, but not as efficiently as the parental SIVmac239 strain. Since macaque studies will likely require an efficiently replicating variant, we set out to optimize SIV-rtTA through in vitro viral evolution.</p> <p>Results</p> <p>Upon long-term culturing of SIV-rtTA, additional nucleotide substitutions were observed in TAR that affect the structure of this RNA element but that do not restore Tat binding. We demonstrate that the bulge and loop mutations that we had introduced in the TAR element of SIV-rtTA to inactivate the Tat-TAR mechanism, shifted the equilibrium between two alternative conformations of TAR. The additional TAR mutations observed in the evolved variants partially or completely restored this equilibrium, which suggests that the balance between the two TAR conformations is important for efficient viral replication. Moreover, SIV-rtTA acquired mutations in the U3 promoter region. We demonstrate that these TAR and U3 changes improve viral replication in T-cell lines and macaque peripheral blood mononuclear cells (PBMC) but do not affect dox-control.</p> <p>Conclusion</p> <p>The dox-dependent SIV-rtTA variant was optimized by viral evolution, yielding variants that can be used to test the conditionally live virus vaccine approach and as a tool in SIV biology studies and vaccine research.</p
    • …
    corecore