30 research outputs found

    Early Developing Pig Embryos Mediate Their Own Environment in the Maternal Tract

    Get PDF
    The maternal tract plays a critical role in the success of early embryonic development providing an optimal environment for establishment and maintenance of pregnancy. Preparation of this environment requires an intimate dialogue between the embryo and her mother. However, many intriguing aspects remain unknown in this unique communication system. To advance our understanding of the process by which a blastocyst is accepted by the endometrium and better address the clinical challenges of infertility and pregnancy failure, it is imperative to decipher this complex molecular dialogue. The objective of the present work is to define the local response of the maternal tract towards the embryo during the earliest stages of pregnancy. We used a novel in vivo experimental model that eliminated genetic variability and individual differences, followed by Affymetrix microarray to identify the signals involved in this embryo-maternal dialogue. Using laparoscopic insemination one oviduct of a sow was inseminated with spermatozoa and the contralateral oviduct was injected with diluent. This model allowed us to obtain samples from the oviduct and the tip of the uterine horn containing either embryos or oocytes from the same sow. Microarray analysis showed that most of the transcripts differentially expressed were down-regulated in the uterine horn in response to blastocysts when compared to oocytes. Many of the transcripts altered in response to the embryo in the uterine horn were related to the immune system. We used an in silico mathematical model to demonstrate the role of the embryo as a modulator of the immune system. This model revealed that relatively modest changes induced by the presence of the embryo could modulate the maternal immune response. These findings suggested that the presence of the embryo might regulate the immune system in the maternal tract to allow the refractory uterus to tolerate the embryo and support its development

    In vitro decidualisation of canine uterine stromal cells

    Get PDF
    BACKGROUND: The uterine response to the presence of embryos is poorly understood in the domestic dog (Canis familiaris). The intimate embryo-maternal cross-talk, which begins following the hatching of blastocysts and embryo attachment leads to strong structural and functional remodelling of the uterus. A part of this process is decidualisation, comprising morphological and biochemical changes that result in formation of maternal stroma-derived decidual cells. These are an integral part of the canine placenta materna, which together with the maternal vascular endothelium are the only cells of the canine endotheliochorial placenta able to resist trophoblast invasion. These cells are also the only ones within the canine placenta expressing the progesterone receptor (PGR). Understanding the decidualisation process thus appears essential for understanding canine reproductive physiology. METHODS: Here, we investigated the capability of canine uterine stromal cells to decidualise in vitro, thereby serving as a canine model of decidualisation. A dbcAMP-mediated approach was chosen during a time course of 24 - 72Β h. Tissue material from six (n = 6) healthy, dioestric bitches was used (approximately 2Β weeks after ovulation). Cells were characterized by differential staining, nearly 100Β % of which were vimentin-positive. Scanning and transmission electron microscope analyses were applied, and morphological changes were recorded with a live cell imaging microscope. Expression of several decidualisation markers was investigated. RESULTS: The in vitro cultured stromal cells acquired characteristics of decidual cells when incubated with 0.5Β mM dbcAMP for 72Β h. Their shape changed from elongated to rounded, while ultrastructural analysis revealed higher numbers of mitochondria and secretory follicles, and an increased proliferation rate. Elevated expression levels of IGF1, IGF2, PRLR and ERΞ± were observed in decidualised cells; PRL and ERΞ² remained mostly below the detection limit, while PGR remained unaffected. The expression of smooth muscle Ξ± actin (Ξ±SMA), another decidualisation marker, was strongly induced. Among prostaglandin system members, levels of COX2 (PTGS2) and of PGE2-synthase (PTGES) were upregulated. Expression of the PGE2 receptors, PTGER2 and PTGER4, was clearly detectable. CONCLUSION: An in vitro decidualisation model with canine uterine stromal cells was successfully established, allowing future, more detailed studies to be undertaken on the underlying molecular and endocrine mechanisms of canine decidualisation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12958-015-0066-4) contains supplementary material, which is available to authorized users

    Effect of human chorionic gonadotropin on uterine blood flow in intact and ovariectomized gilts

    No full text
    corecore