37 research outputs found

    Increased tartrate-resistant acid phosphatase (TRAP) expression in malignant breast, ovarian and melanoma tissue: an investigational study

    Get PDF
    BACKGROUND: Tartrate-resistant acid phosphatase (TRAP) is a metalloprotein enzyme that belongs to the acid phosphatases and is known to be expressed by osteoclasts. It has already been investigated as a marker of bone metastases in cancer patients. In this study, which examined the value of serum TRAP concentrations as a marker of bone disease in breast cancer patients, we observed high concentrations of TRAP even in patients without bone metastases. To elucidate this phenomenon, we examined the expression of TRAP in breast cancer cells and the cells of several other malignancies. METHODS: TRAP concentrations in the serum of tumor patients were determined by ELISA. The expression of TRAP in breast, ovarian, and cervical cancer and malignant melanoma was analyzed by immunohistochemistry. RT-PCR and immunocytology were used to evaluate TRAP expression in cultured tumor cells. RESULTS: A marked increase in serum TRAP concentrations was observed in patients with breast and ovarian cancer, regardless of the presence or absence of bone disease. TRAP expression was found in breast and ovarian cancers and malignant melanoma, while cervical cancer showed only minimal expression of TRAP. Expression of TRAP was absent in benign tissue or was much less marked than in the corresponding malignant tissue. TRAP expression was also demonstrated in cultured primary cancer cells and in commercially available cell lines. CONCLUSION: Overexpression of TRAP was detected in the cells of various different tumors. TRAP might be useful as a marker of progression of malignant disease. It could also be a potential target for future cancer therapies

    Expression and secretion of the novel adipokine tartrate-resistant acid phosphatase from adipose tissues of obese and lean women.

    No full text
    International audienceOBJECTIVE: Tartrate-resistant acid phosphatase (TRAP) expressed by adipose tissue macrophages (ATMs) induces mice obesity and human adipocyte differentiation in vitro. This study aimed to investigate whether TRAP was secreted differently from human obese versus lean adipose tissues and to identify the cellular source of adipose tissue TRAP. DESIGN: Subcutaneous adipose tissues obtained from healthy subjects. Enzyme-linked immunosorbent assays (ELISAs) for total (5a+5b) and cleaved TRAP (5b) were used. TRAP secretion was determined in adipose tissue biopsies, and mRNA expression was studied in cell types isolated from the same. SUBJECTS: Results of 24 lean and 24 obese women (in vitro) and 8 subjects (in vivo) were compared. The main outcome measurements were TRAP expression and secretion in vitro and in vivo. RESULTS: In-house total TRAP ELISA showed high sensitivity and a coefficient of variance of 11%. Adipose secretion of total TRAP was linear in vitro with time and was evident in vivo. Total TRAP secretion in vitro was similar in lean and obese women expressed per unit weight of the adipose tissue but correlated positively with the number/size of adipocytes (P ≤ 0.01) and with adipose secretion of tumor necrosis factor-α and interleukin-6 (P<0.01). TRAP 5b was not secreted from the adipose tissue. ATMs displayed highest cellular expression of TRAP mRNA in adipose tissue cells derived from lean or obese women. CONCLUSIONS: TRAP is a novel human adipokine produced by macrophages and secreted from the subcutaneous adipose tissue in vivo and in vitro. Secretion is linked to the size and number of adipocytes, as well as to concomitant secretion of inflammatory mediators, suggesting that TRAP is involved in fat accumulation and adipose inflammation

    Absence of mechanical loading in utero influences bone mass and architecture but not innervation in Myod-Myf5-deficient mice

    No full text
    Although the responses of bone to increased loading or exercise have been studied in detail, our understanding of the effects of decreased usage of the skeleton has been limited by the scarcity of suitable models. Such models should ideally not affect bone innervation, which appears to be a mediator of physiological responses of bone to unloading. MyoD–/–/Myf5–/– (dd/ff) mice lack skeletal muscle, so the fetuses develop without any active movement in utero and die soon after birth. We used micro-compter tomography and histology to analyse their bone development and structure during endochondral ossification in parallel with the establishment of bone innervation. Long bones from mutant mice were found to be profoundly different from controls, with shorter mineralized zones and less mineralization. They lacked many characteristics of adult bones – curvatures, changes in shaft diameter and traction epiphyses where muscles originate or insert – that were evident in the controls. Histologically, dd/ff mice showed the same degree of endochondral development as wild-type animals, but presented many more osteoclasts in the newly layed bone. Innervation and the expression pattern of semaphorin-3A signalling molecules were not disturbed in the mutants. Overall, we have found no evidence for a major defect of development in dd/ff mice, and specifically no alteration or delay in endochondral ossification and bone innervation. The altered morphological features of dd/ff mice and the increased bone resorption show the role of muscle activity in bone shaping and the consequences of bone unloading
    corecore