2,320 research outputs found

    Reprocessing of legacy seismic reflection profile data and its implications for plate flexure in the vicinity of the Hawaiian islands

    Get PDF
    During 1975–1988, an academic research ship, R/V Robert D. Conrad, acquired more than 150,000-line-km of multichannel seismic reflection profile data from each of the world's main ocean basins and their margins. This extensive legacy seismic data set, which involved both single ship and two-ship data acquisition, has been widely used by the marine geoscience community. We report on our experience in reprocessing seismic reflection profile data acquired during Conrad cruise RC2308 to the Hawaiian Islands region in August/September 1982. We show that the application of modern, industry standard processing techniques, including filtering, de-bubble, deconvolution, and migration, can significantly enhance 40+ year old legacy seismic reflection profile data. The reprocessed data reveals more precisely, and with much less scatter, the flexure of Cretaceous Pacific oceanic crust caused by the Pliocene-Recent volcanic loads that comprise the Hawaiian Islands. A comparison of observed picks of top oceanic crust which has been corrected for the Hawaiian swell and the Molokai Fracture Zone with the calculations of a simple 3-dimensional elastic plate (flexure) model reveals a best fit elastic plate thickness of the lithosphere, Te, of 26.7 km, an average infill density of 2,701 kg m−3, and a Root Mean Square difference between observations and calculations of 305 m. Tests show these results depend weakly on the load density assumed and that the average infill density is close to what would be predicted from an arithmetic average of the flanking moat infill density and the infill density that immediately underlies the volcanic edifice

    A seismic tomography, gravity, and flexure study of the crust and upper mantle structure across the Hawaiian Ridge: 2. Ka'ena

    Get PDF
    The Hawaiian Ridge, a classic intraplate volcanic chain in the Central Pacific Ocean, has long attracted researchers due to its origin, eruption patterns, and impact on lithospheric deformation. Thought to arise from pressure-release melting within a mantle plume, its mass-induced deformation of Earth's surface depends on load distribution and lithospheric properties, including elastic thickness (Te). To investigate these features, a marine geophysical campaign was carried out across the Hawaiian Ridge in 2018. Westward of the island of O'ahu, a seismic tomographic image, validated by gravity data, reveals a large mass of volcanic material emplaced on the oceanic crust, flanked by an apron of volcaniclastic material filling the moat created by plate flexure. The ridge adds ∼7 km of material to pre-existing ∼6-km-thick oceanic crust. A high-velocity and high-density core resides within the volcanic edifice, draped by alternating lava flows and mass wasting material. Beneath the edifice, upper mantle velocities are slightly higher than that of the surrounding mantle, and there is no evidence of extensive magmatic underplating of the crust. There is ∼3.5 km of downward deflection of the sediment-crust and crust-mantle boundaries due to flexure in response to the volcanic load. At Ka'ena Ridge, the volcanic edifice's height and cross-sectional area are no more than half as large as those determined at Hawai'i Island. Together, these studies confirm that volcanic loads to the west of Hawai'i are largely compensated by flexure. Comparisons to the Emperor Seamount Chain confirm the Hawaiian Ridge's relatively stronger lithospheric rigidity

    The Permian Cornubian granite batholith, SW England; part 2: gravity anomalies, structure, and state of isostasy

    Get PDF
    A new compilation of Bouguer gravity anomaly data has been used, together with forward and inverse modeling, to reappraise the structure, volume, and state of isostasy of the Cornubian batholith of SW England. We show the individual plutons that comprise the batholith are, on average, ∼10−11 km thick, are outward-sloping in their upper 2−3 km, and are underlain by roots which protrude downward into the middle crust. The batholith volume is estimated within the range of 76,367 ± 17,286 km3, significantly larger than previous estimates. Granite outcrops correlate with elevated topography, and mass balance calculations show that the mass deficiency of the granites relative to their host metasedimentary rocks is approximately equal to the mass excess of the topography relative to air. The existence of roots beneath individual plutons is in general agreement with predictions of an Airy model of isostasy and a depth of compensation that is within the crust rather than at the Moho. In addition, a middle crust compensation depth is compatible with the origin of the granites by heating and melting of metasedimentary rocks and with data from experimental rock mechanics which suggest that at the melting temperature and pressure of granite formation, deformation is likely to be plastic and controlled by glide along dislocations. During pluton emplacement the middle crust would, therefore, have acted as a mechanically weak layer, effectively decoupling the topography from any support it might otherwise have received from the lower crust and/or upper mantle

    A seismic tomography, gravity, and flexure study of the crust and upper mantle structure of the Hawaiian Ridge: 1

    Get PDF
    The Hawaiian Ridge has long been a focus site for studying lithospheric flexure due to intraplate volcano loading, but crucial load and flexure details remain unclear. We address this problem using wide-angle seismic refraction and reflection data acquired along a ∼535-km-long profile that intersects the ridge between the islands of Maui and Hawai'i and crosses 80–95 Myr-old lithosphere. A tomographic image constructed using travel time data of several seismic phases reveals broad flexure of Pacific oceanic crust extending up to ∼200–250 km either side of the Hawaiian Ridge, and vertically up to ∼6–7 km. The P-wave velocity structure, verified by gravity modeling, reveals that the west flank of Hawaii is comprised of extrusive lavas overlain by volcanoclastic sediments and a carbonate platform. In contrast, the Hāna Ridge, southeast of Maui, contains a high-velocity core consistent with mafic or ultramafic intrusive rocks. Magmatic underplating along the seismic line is not evident. Reflectors at the top and bottom of the pre-existing oceanic crust suggest a ∼4.5–6 km crustal thickness. Simple three-dimensional flexure modeling with an elastic plate thickness, Te, of 26.7 km shows that the depths to the reflectors beneath the western flank of Hawai'i can be explained by volcano loading in which Maui and the older islands in the ridge contribute ∼43% to the flexure and the island of Hawai'i ∼51%. Previous studies, however, revealed a higher Te beneath the eastern flank of Hawai'i suggesting that isostatic compensation may not yet be complete at the youngest end of the ridge

    Seamounts

    Get PDF
    Definition: Seamounts are literally mountains rising from the seafloor. More specifically, they are “any geographically isolated topographic feature on the seafloor taller than 100 m, including ones whose summit regions may temporarily emerge above sea level, but not including features that are located on continental shelves or that are part of other major landmasses” (Staudigel et al., 2010). The term “guyot” can be used for seamounts having a truncated cone shape with a flat summit produced by erosion at sea level (Hess, 1946), development of carbonate reefs (e.g., Flood, 1999), or partial collapse due to caldera formation (e.g., Batiza et al., 1984). Seamounts <1,000 m tall are sometimes referred to as “knolls” (e.g., Hirano et al., 2008). “Petit spots” are a newly discovered subset of sea knolls confined to the bulge of subducting oceanic plates of oceanic plates seaward of deep-sea trenches (Hirano et al., 2006)

    The Permian Cornubian granite batholith, SW England; Part 1: Field, structural, and petrological constraints

    Get PDF
    This is the author accepted manuscript. The final version is available from the Geological Society of America via the DOI in this recordThe Permian Cornubian granite batholith (295−275 Ma) in SW England includes seven major plutons and numerous smaller stocks extending for ∼250 km from the Isles of Scilly in the WSW to Dartmoor in the ENE. The granites are peraluminous and classified as crustal melt S-type, predominantly two-mica granites, and biotite or tourmaline monzo- and syenogranites, with subordinate minor topaz granite and lithium mica granite. The granites and their host rocks are pervasively mineralized with tin (cassiterite), tungsten (wolframite, ferberite), copper (chalcopyrite, chalcocite, bornite), arsenic (arsenopyrite), and zinc (sphalerite) mineralized lodes. Quartz-muscovite selvedges (greisen-bordered) also contain enrichment of lithophile elements such as boron (tourmaline), fluorine (fluorite), and lithium (lithium-micas such as lepidolite and zinnwaldite). They are derived from both muscovite and biotite dehydration melting of pelitic-psammitic rocks and intruded from a common source along the length of the batholith. Pressure estimates from andalusite and cordierite-bearing hornfels in the contact metamorphic aureole (150 ± 100 MPa) show that the granites intruded to 3 km depth. Cupolas around the Land’s End and Tregonning granites show aplite-pegmatite dikes and tourmaline + quartz + muscovite veins (greisen) that are frequently mineralized. Synchronous intrusions of lamprophyre dikes suggest an additional heat source for crustal melting may have been from underplating of alkaline magmas. The lack of significant erosion means that the source region is not exposed. In an accompanying paper (Part 2; Watts et al., 2024), gravity modeling reveals possible solutions for the shape and depth of the granite and the structure of the lower crust. We present a new model for the Land’s End, Tregonning, and Carnmenellis granites showing a mid-crustal source composed of amphibolite facies migmatites bounded by prominent seismic reflectors, with upward expanding dikes feeding inter-connected granite laccoliths that show inflated cupolas with shallow contact metamorphism. The Cornubian granites intruded >90 m.y. after obduction of the Lizard ophiolite complex, and after Upper Devonian−Carboniferous Variscan compressional, and later extensional, deformation of the surrounding Devonian country rocks. Comparisons are made between the Cornubian batholith and the Patagonian batholith in Chile, the Himalayan leucogranites, and the Baltoro granite batholith along the Karakoram range in northern Pakistan

    Moduli space coordinates and excited state g-functions

    Full text link
    We consider the space of boundary conditions of Virasoro minimal models formed from the composition of a collection of flows generated by \phi_{1,3}. These have recently been shown to fall naturally into a sequence, each term having a coordinate on it in terms of a boundary parameter, but no global parameter has been proposed. Here we investigate the idea that the overlaps of particular bulk states with the boundary states give natural coordinates on the moduli space of boundary conditions. We find formulae for these overlaps using the known thermodynamic Bethe Ansatz descriptions of the ground and first excited state on the cylinder and show that they give a global coordinate on the space of boundary conditions, showing it is smooth and compact as expected.Comment: 10 pages, 4 figure

    Rapid mantle-driven uplift along the Angolan margin in the late Quaternary

    Get PDF
    Mantle flow can cause the Earth’s surface to uplift and subside, but the rates and durations of these motions are, in general, poorly resolved due to the difficulties in making measurements of relatively small vertical movements (hundreds of metres) over sufficiently large distances (about 1,000 km). Here we examine the effect of mantle upwelling through a study of Quaternary uplift along the coast of Angola. Using both optically stimulated luminescence on sediment grains, and radiocarbon dating of fossil shells, we date a 25 m coastal terrace at about 45 thousand years old, when sea level was about 75 m lower than today, indicating a rapid uplift rate of 1.8–2.6 mm yr−1 that is an order of magnitude higher than previously obtained rates averaged over longer time periods. Automated extraction and correlation of coastal terrace remnants from digital topography uncovers a symmetrical uplift with diameter of more than 1,000 km. The wavelength and relatively short timescale of the uplift suggest that it is associated with a mantle process, possibly convective upwelling, and that the topography may be modulated by rapid short-lived pulses of mantle-derived uplift. Our study shows that stable continental regions far from the effects of glacial rebound may experience rapid vertical displacements of several millimetres per year
    corecore