14 research outputs found

    Lifetimes of electrons in the Shockley surface state band of Ag(111)

    Full text link
    We present a theoretical many-body analysis of the electron-electron (e-e) inelastic damping rate Γ\Gamma of electron-like excitations in the Shockley surface state band of Ag(111). It takes into account ab-initio band structures for both bulk and surface states. Γ\Gamma is found to increase more rapidly as a function of surface state energy E than previously reported, thus leading to an improved agreement with experimental data

    Image resonance in the many-body density of states at a metal surface

    Get PDF
    The electronic properties of a semi-infinite metal surface without a bulk gap are studied by a formalism that is able to account for the continuous spectrum of the system. The density of states at the surface is calculated within the GW approximation of many-body perturbation theory. We demonstrate the presence of an unoccupied surface resonance peaked at the position of the first image state. The resonance encompasses the whole Rydberg series of image states and cannot be resolved into individual peaks. Its origin is the shift in spectral weight when many-body correlation effects are taken into account

    Structure and dynamics of Rh surfaces

    Full text link
    Lattice relaxations, surface phonon spectra, surface energies, and work functions are calculated for Rh(100) and Rh(110) surfaces using density-functional theory and the full-potential linearized augmented plane wave method. Both, the local-density approximation and the generalized gradient approximation to the exchange-correlation functional are considered. The force constants are obtained from the directly calculated atomic forces, and the temperature dependence of the surface relaxation is evaluated by minimizing the free energy of the system. The anharmonicity of the atomic vibrations is taken into account within the quasiharmonic approximation. The importance of contributions from different phonons to the surface relaxation is analyzed.Comment: 9 pages, 7 figures, scheduled to appear in Phys. Rev. B, Feb. 15 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Diagrammatic self-energy approximations and the total particle number

    Get PDF
    There is increasing interest in many-body perturbation theory as a practical tool for the calculation of ground-state properties. As a consequence, unambiguous sum rules such as the conservation of particle number under the influence of the Coulomb interaction have acquired an importance that did not exist for calculations of excited-state properties. In this paper we obtain a rigorous, simple relation whose fulfilment guarantees particle-number conservation in a given diagrammatic self-energy approximation. Hedin's G(0)W(0) approximation does not satisfy this relation and hence violates the particle-number sum rule. Very precise calculations for the homogeneous electron gas and a model inhomogeneous electron system allow the extent of the nonconservation to be estimated
    corecore