13,239 research outputs found
On the adhesion of particles to a cell layer under flow
The non-specific adhesion of spherical particles to a cell substrate is
analyzed in a parallel plate flow chamber, addressing the effect of the
particle size. Differently from other experiments, the total volume of the
injected particles has been fixed, rather than the total number of particles,
as the diameter d of the particles is changed from 500 nm up to 10 m. From
the analysis of the experimental data, simple and instructive scaling adhesion
laws have been derived showing that (i) the number of particles adherent to the
cell layer per unit surface decreases with the size of the particle as d^(-1.7)
; and consequently (ii) the volume of the particles adherent per unit surface
increases with the size of the particles as d^(+1.3). These results are of
importance in the "rational design" of nanoparticles for drug delivery and
biomedical imaging.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Fractional Lindstedt series
The parametric equations of the surfaces on which highly resonant
quasi-periodic motions develop (lower-dimensional tori) cannot be analytically
continued, in general, in the perturbation parameter, i.e. they are not
analytic functions of the perturbation parameter. However rather generally
quasi-periodic motions whose frequencies satisfy only one rational relation
("resonances of order 1") admit formal perturbation expansions in terms of a
fractional power of the perturbation parameter, depending on the degeneration
of the resonance. We find conditions for this to happen, and in such a case we
prove that the formal expansion is convergent after suitable resummation.Comment: 40 pages, 6 figure
Resummation of perturbation series and reducibility for Bryuno skew-product flows
We consider skew-product systems on T^d x SL(2,R) for Bryuno base flows close
to constant coefficients, depending on a parameter, in any dimension d, and we
prove reducibility for a large measure set of values of the parameter. The
proof is based on a resummation procedure of the formal power series for the
conjugation, and uses techniques of renormalisation group in quantum field
theory.Comment: 30 pages, 12 figure
Fermionic Corrections to Fluid Dynamics from BTZ Black Hole
We reconstruct the complete fermionic orbit of the non-extremal BTZ black
hole by acting with finite supersymmetry transformations. The solution
satisfies the exact supergravity equations of motion to all orders in the
fermonic expansion and the final result is given in terms of fermionic
bilinears. By fluid/gravity correspondence, we derive linearized Navier-Stokes
equations and a set of new differential equations from Rarita-Schwinger
equation. We compute the boundary energy-momentum tensor and we interpret the
result as a perfect fluid with a modified definition of fluid velocity.
Finally, we derive the modified expression for the entropy of the black hole in
terms of the fermionic bilinears.Comment: 21 pages, Latex2e, no figure
Fermionic Wigs for BTZ Black Holes
We compute the wig for the BTZ black hole, namely the complete non-linear
solution of supergravity equations with all fermionic zero modes. We use a
"gauge completion" method starting from AdS_3 Killing spinors to generate the
gravitinos fields associated to the BH and we compute the back-reaction on the
metric. Due to the anticommutative properties of the fermionic hairs the
resummation of these effects truncates at some order. We illustrate the
technique proposed in a precedent paper in a very explicit and analytical form.
We also compute the mass, the angular momentum and other charges with their
corrections.Comment: 11 pages, no figure
Fermions, Wigs, and Attractors
We compute the modifications to the attractor mechanism due to fermionic
corrections. In N=2, D=4 supergravity, at the fourth order, we find a new
contribution to the horizon values of the scalar fields of the vector
multiplets.Comment: v2 : 1+11 pages; paper reorganized in Sections; Sec. 5 added, with
detailed treatment of the axion-dilaton model; some typos fixed and
references adde
Combined Solar System and rotation curve constraints on MOND
The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the
external gravitational field in which a system is embedded can produce effects
on its internal dynamics. In this communication, we first show that this
External Field Effect can significantly improve some galactic rotation curves
fits by decreasing the predicted velocities of the external part of the
rotation curves. In modified gravity versions of MOND, this External Field
Effect also appears in the Solar System and leads to a very good way to
constrain the transition function of the theory. A combined analysis of the
galactic rotation curves and Solar System constraints (provided by the Cassini
spacecraft) rules out several classes of popular MOND transition functions, but
leaves others viable. Moreover, we show that LISA Pathfinder will not be able
to improve the current constraints on these still viable transition functions.Comment: 13 pages, 7 figures, accepted for publication in MNRA
- …