8,275 research outputs found
Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential
We show that cold dark matter particles interacting through a Yukawa
potential could naturally explain the recently observed cores in dwarf galaxies
without affecting the dynamics of objects with a much larger velocity
dispersion, such as clusters of galaxies. The velocity dependence of the
associated cross-section as well as the possible exothermic nature of the
interaction alleviates earlier concerns about strongly interacting dark matter.
Dark matter evaporation in low-mass objects might explain the observed deficit
of satellite galaxies in the Milky Way halo and have important implications for
the first galaxies and reionization.Comment: 6 pages, 2 figure
Probing the Epoch of Early Baryonic Infall Through 21cm Fluctuations
After cosmological recombination, the primordial hydrogen gas decoupled from
the cosmic microwave background (CMB) and fell into the gravitational potential
wells of the dark matter. The neutral hydrogen imprinted acoustic oscillations
on the pattern of brightness fluctuations due to its redshifted 21cm absorption
of the CMB. Unlike CMB temperature fluctuations which probe the power spectrum
at cosmic recombination, we show that observations of the 21cm fluctuations at
z ~ 20-200 can measure four separate fluctuation modes (with a fifth mode
requiring very high precision), thus providing a unique probe of the geometry
and composition of the universe.Comment: 5 pages, 4 figures, MNRAS Letters, accepte
C.V.D. annual report: November 1965 research project RU27-1 :an analogue method for the determination of potential distributions in semiconductor systems
A general method for the solution of the nonlinear
Shockley-Poisson differential equation which
governs the potential distribution in non-degenerate
semiconductor systems is described which can be applied
to the evaluation of depletion layer widths, carrier
densities and capacitance bias relationships of p-n
junction structures.
The method is based upon the use of a particular
type of resistance network analogue and results obtained
for several one and two dimensional configurations are
discussed
Recommended from our members
GRB Cosmology: Probing The Early Universe
Current observations are about to open up a direct observational window into the final frontier of cosmology: the crucial first billion years in cosmic history when the first stars and galaxies formed. Even before the launch of the James Webb Space Telescope, it would be possible to utilize Gamma-Ray Bursts (GRBs) as unique probes of cosmic star formation and the state of the intergalactic medium up to redshifts of the first stars. The ongoing Swift mission might be the first observatory to detect individual Population III stars, provided that massive metal-free stars were able to trigger GRBs. Swift will empirically constrain the redshift at which Population III star formation was terminated, thus providing crucial input to models of cosmic reionization and metal enrichment.Astronom
The Imprint of Cosmic Reionization on Galaxy Clustering
We consider the effect of reionization on the clustering properties of galaxy
samples at intermediate redshifts (z~0.3-5.5). Current models for the
reionization of intergalactic hydrogen predict that overdense regions will be
reionized early, thus delaying the build up of stellar mass in the progenitors
of massive lower-redshift galaxies. As a result, the stellar populations
observed in intermediate redshift galaxies are somewhat younger and hence
brighter in overdense regions of the Universe. Galaxy surveys would therefore
be sensitive to galaxies with a somewhat lower dark matter mass in overdense
regions. The corresponding increase in the observed number density of galaxies
can be parameterized as a galaxy bias due to reionization. We model this
process using merger trees combined with a stellar synthesis code. Our model
demonstrates that reionization has a significant effect on the clustering
properties of galaxy samples that are selected based on their star-formation
properties. The bias correction in Lyman-break galaxies (including those in
proposed baryonic oscillation surveys at z<1) is at the level of 10-20% for a
halo mass of 10^12 solar masses, leading to corrections factors of 1.5-2 in the
halo mass inferred from measurements of clustering length. The reionization of
helium could also lead to a sharp increase in the amplitude of the galaxy
correlation function at z~3. We find that the reionization bias is
approximately independent of scale and halo mass. However since the traditional
galaxy bias is mass dependent, the reionization bias becomes relatively more
important for lower mass systems. The correction to the bias due to
reionization is very small in surveys of luminous red galaxies at z<1.Comment: 17 pages, 6 figures. Submitted to MNRA
The Cosmic Microwave Background and the Ionization History of the Universe
Details of how the primordial plasma recombined and how the universe later
reionized are currently somewhat uncertain. This uncertainty can restrict the
accuracy of cosmological parameter measurements from the Cosmic Microwave
Background (CMB). More positively, future CMB data can be used to constrain the
ionization history using observations. We first discuss how current
uncertainties in the recombination history impact parameter constraints, and
show how suitable parameterizations can be used to obtain unbiased parameter
estimates from future data. Some parameters can be constrained robustly,
however there is clear motivation to model recombination more accurately with
quantified errors. We then discuss constraints on the ionization fraction
binned in redshift during reionization. Perfect CMB polarization data could in
principle distinguish different histories that have the same optical depth. We
discuss how well the Planck satellite may be able to constrain the ionization
history, and show the currently very weak constraints from WMAP three-year
data.Comment: Changes to match MNRAS accepted versio
Global 21cm signal experiments: a designer's guide
[Abridged] The spatially averaged global spectrum of the redshifted 21cm line
has generated much experimental interest, for it is potentially a direct probe
of the Epoch of Reionization and the Dark Ages. Since the cosmological signal
here has a purely spectral signature, most proposed experiments have little
angular sensitivity. This is worrisome because with only spectra, the global
21cm signal can be difficult to distinguish from foregrounds such as Galactic
synchrotron radiation, as both are spectrally smooth and the latter is orders
of magnitude brighter. We establish a mathematical framework for global signal
data analysis in a way that removes foregrounds optimally, complementing
spectra with angular information. We explore various experimental design
trade-offs, and find that 1) with spectral-only methods, it is impossible to
mitigate errors that arise from uncertainties in foreground modeling; 2)
foreground contamination can be significantly reduced for experiments with fine
angular resolution; 3) most of the statistical significance in a positive
detection during the Dark Ages comes from a characteristic high-redshift trough
in the 21cm brightness temperature; and 4) Measurement errors decrease more
rapidly with integration time for instruments with fine angular resolution. We
show that if observations and algorithms are optimized based on these findings,
an instrument with a 5 degree beam can achieve highly significant detections
(greater than 5-sigma) of even extended (high Delta-z) reionization scenarios
after integrating for 500 hrs. This is in contrast to instruments without
angular resolution, which cannot detect gradual reionization. Abrupt ionization
histories can be detected at the level of 10-100's of sigma. The expected
errors are also low during the Dark Ages, with a 25-sigma detection of the
expected cosmological signal after only 100 hrs of integration.Comment: 34 pages, 30 figures. Replaced (v2) to match accepted PRD version
(minor pedagogical additions to text; methods, results, and conclusions
unchanged). Fixed two typos (v3); text, results, conclusions etc. completely
unchange
- …
