333 research outputs found

    Fluctuations and differential contraction during regeneration of Hydra vulgaris tissue toroids

    Full text link
    We studied regenerating bilayered tissue toroids dissected from Hydra vulgaris polyps and relate our macroscopic observations to the dynamics of force-generating mesoscopic cytoskeletal structures. Tissue fragments undergo a specific toroid-spheroid folding process leading to complete regeneration towards a new organism. The time scale of folding is too fast for biochemical signalling or morphogenetic gradients which forced us to assume purely mechanical self-organization. The initial pattern selection dynamics was studied by embedding toroids into hydro-gels allowing us to observe the deformation modes over longer periods of time. We found increasing mechanical fluctuations which break the toroidal symmetry and discuss the evolution of their power spectra for various gel stiffnesses. Our observations are related to single cell studies which explain the mechanical feasibility of the folding process. In addition, we observed switching of cells from a tissue bound to a migrating state after folding failure as well as in tissue injury. We found a supra-cellular actin ring assembled along the toroid's inner edge. Its contraction can lead to the observed folding dynamics as we could confirm by finite element simulations. This actin ring in the inner cell layer is assembled by myosin- driven length fluctuations of supra-cellular {\alpha}-actin structures (myonemes) in the outer cell-layer.Comment: 19 pages and 8 figures, submitted to New Journal of Physic

    Short ORF-Dependent Ribosome Shunting Operates in an RNA Picorna-Like Virus and a DNA Pararetrovirus that Cause Rice Tungro Disease

    Get PDF
    Rice tungro disease is caused by synergistic interaction of an RNA picorna-like virus Rice tungro spherical virus (RTSV) and a DNA pararetrovirus Rice tungro bacilliform virus (RTBV). It is spread by insects owing to an RTSV-encoded transmission factor. RTBV has evolved a ribosome shunt mechanism to initiate translation of its pregenomic RNA having a long and highly structured leader. We found that a long leader of RTSV genomic RNA remarkably resembles the RTBV leader: both contain several short ORFs (sORFs) and potentially fold into a large stem-loop structure with the first sORF terminating in front of the stem basal helix. Using translation assays in rice protoplasts and wheat germ extracts, we show that, like in RTBV, both initiation and proper termination of the first sORF translation in front of the stem are required for shunt-mediated translation of a reporter ORF placed downstream of the RTSV leader. The base pairing that forms the basal helix is required for shunting, but its sequence can be varied. Shunt efficiency in RTSV is lower than in RTBV. But in addition to shunting the RTSV leader sequence allows relatively efficient linear ribosome migration, which also contributes to translation initiation downstream of the leader. We conclude that RTSV and RTBV have developed a similar, sORF-dependent shunt mechanism possibly to adapt to the host translation system and/or coordinate their life cycles. Given that sORF-dependent shunting also operates in a pararetrovirus Cauliflower mosaic virus and likely in other pararetroviruses that possess a conserved shunt configuration in their leaders it is tempting to propose that RTSV may have acquired shunt cis-elements from RTBV during their co-existence

    Molecular dissection of the prototype foamy virus (PFV) RNA 5′-UTR identifies essential elements of a ribosomal shunt

    Get PDF
    The prototype foamy virus (PFV) is a nonpathogenic retrovirus that shows promise as a vector for gene transfer. The PFV (pre)genomic RNA starts with a long complex leader that can be folded into an elongated hairpin, suggesting an alternative strategy to cap-dependent linear scanning for translation initiation of the downstream GAG open reading frame (ORF). We found that the PFV leader carries several short ORFs (sORFs), with the three 5′-proximal sORFs located upstream of a structural element. Scanning-inhibitory hairpin insertion analysis suggested a ribosomal shunt mechanism, whereby ribosomes start scanning at the leader 5′-end and initiate at the downstream ORF via bypass of the central leader regions, which are inhibitory for scanning. We show that the efficiency of shunting depends strongly on the stability of the structural element located downstream of either sORFs A/A′ or sORF B, and on the translation event at the corresponding 5′-proximal sORF. The PFV shunting strategy mirrors that of Cauliflower mosaic virus in plants; however, in mammals shunting can operate in the presence of a less stable structural element, although it is greatly improved by increasing the number of base pairings. At least one shunt configuration was found in primate FV (pre)genomic RNAs

    Implementierung einer modelbasierten prädiktiven regelung für ein nichtwohngebäude mit komplexem energiekonzept - simulationsergebnisse

    Get PDF
    The EU-funded project PEBBLE aims to achieve maximal net energy produced for buildings under the constraint of user comfort by using an intelligent control process. The new E.ON ERC main building will b e u sed as a d emonstration building. Detailed simulation models for the demonstration building are prerequisites for the building’s optimization and control process. The model was developed with the modeling language Modelica. The simulations were done in the simulation environment Dymola coupled with the controller optimizing algorithm, which was implemented in MATLAB. First simulation results show that this controller leads to better results regarding energy consumption and comfort than rule-based controllers. // Das EU-Projekt PEBBLE strebt die Erreichung der maximalen erzeug baren Nettoenergie für Gebäude unter Einhaltung von Behaglichkeitsbedingungen mit Hilfe eines intelligenten Steuerungs-und Regelungsprozesses. an. Das neue E.ON ERC Hauptgebäude an der R WTH Aachen f ungiert da bei al s De monstrationsgebäude. Der Opt imierungs- un d Regelungsprozess setzt ein detailliertes th ermisches Si mulationsmodell des G ebäudes voraus, da s be nutzt wi rd um die Regler zu entwickeln und zu testen. Das Mo dell wurde in der Modelliersprache Modelica entwickelt. Die Si mulationen wurden i n de r Si mulationsumgebung Dymola gekoppelt mit dem im MATLAB programmierten Opt imierungsalgorithmus fü r de n R egler durchgeführt. Erste Simulationsergebnisse zeigen, dass der neue Regler im Vergleich zu üblichen regelbasierten St rategien z u besseren Er gebnissen hinsichtlich Energiebedarf un d Inn enraumbehaglichkeit führt

    Simulation Assisted Implementation of a Model Based Control Parameter Fine-tuning Methodology for a Non-residential Building With a Complex Energy System

    Get PDF
    In order to improve the energy efficiency, while still insuring indoor comfort for a new non-residential building, a model-assisted fine-tuning methodology for control parameters was implemented. During offline experiments, where no control parameters are sent] to the building, the method was configured according to the particularities of the building. To this purpose we used a co-simulation, where the optimization algorithm for the control parameters was connected to a simulation model of the building and its technical equipment. The offline experiments show promising results regardmg energy savings when compared to good rule-based controllers. The transition to online experiments is more challenging as it depends on the way the whole building system behaves. (PDF) Simulation assisted implementation of a model based control parameter fine-tuning methodology for a nonresidential building with a complex energy system

    Role of multiparametric magnetic resonance imaging in early detection of prostate cancer.

    Get PDF
    UNLABELLED: Most prostate cancers (PC) are currently found on the basis of an elevated PSA, although this biomarker has only moderate accuracy. Histological confirmation is traditionally obtained by random transrectal ultrasound guided biopsy, but this approach may underestimate PC. It is generally accepted that a clinically significant PC requires treatment, but in case of an non-significant PC, deferment of treatment and inclusion in an active surveillance program is a valid option. The implementation of multiparametric magnetic resonance imaging (mpMRI) into a screening program may reduce the risk of overdetection of non-significant PC and improve the early detection of clinically significant PC. A mpMRI consists of T2-weighted images supplemented with diffusion-weighted imaging, dynamic contrast enhanced imaging, and/or magnetic resonance spectroscopic imaging and is preferably performed and reported according to the uniform quality standards of the Prostate Imaging Reporting and Data System (PIRADS). International guidelines currently recommend mpMRI in patients with persistently rising PSA and previous negative biopsies, but mpMRI may also be used before first biopsy to improve the biopsy yield by targeting suspicious lesions or to assist in the selection of low-risk patients in whom consideration could be given for surveillance. TEACHING POINTS: ? MpMRI may be used to detect or exclude significant prostate cancer. ? MpMRI can guide targeted rebiopsy in patients with previous negative biopsies. ? In patients with negative mpMRI consideration could be given for surveillance. ? MpMRI may add valuable information for the optimal treatment selection

    The C-Terminal Domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC Is a Lectin-Like Carbohydrate Binding Module

    Get PDF
    The D-arabinan-containing polymers arabinogalactan (AG) and lipoarabinomannan (LAM) are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf) transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbCCT) encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM). Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbCCT contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985) at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbCCT, linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis. Author Summary Top Tuberculosis (TB), an infectious disease caused by the bacillus Mycobacterium tuberculosis, burdens large swaths of the world population. Treatment of active TB typically requires administration of an antibiotic cocktail over several months that includes the drug ethambutol. This front line compound inhibits a set of arabinosyltransferase enzymes, called EmbA, EmbB and EmbC, which are critical for the synthesis of arabinan, a vital polysaccharide in the pathogen's unique cell envelope. How precisely ethambutol inhibits arabinosyltransferase activity is not clear, in part because structural information of its pharmacological targets has been elusive. Here, we report the high-resolution structure of the C-terminal domain of the ethambutol-target EmbC, a 390-amino acid fragment responsible for acceptor substrate recognition. Combining the X-ray crystallographic analysis with structural comparisons, site-directed mutagenesis, activity and ligand binding assays, we identified two regions in the C-terminal domain of EmbC that are capable of binding acceptor substrate mimics and are critical for activity of the full-length enzyme. Our results begin to define structure-function relationships in a family of structurally uncharacterised membrane-embedded glycosyltransferases, which are an important target for tuberculosis therapy
    corecore