61 research outputs found

    Real-life use of vitamin D<sub>3-</sub>fortified bread and milk during a winter season: the effects of CYP2R1 and GC genes on 25-hydroxyvitamin D concentrations in Danish families, the VitmaD study.

    Get PDF
    Common genetic variants rs10741657 and rs10766197 in CYP2R1 and rs4588 and rs842999 in GC and a combined genetic risk score (GRS) of these four variants influence late summer 25-hydroxyvitamin D (25(OH)D) concentrations. The objectives were to identify those who are most at risk of developing low vitamin D status during winter and to assess whether vitamin D(3)-fortified bread and milk will increase 25(OH)D concentrations in those with genetically determined low 25(OH)D concentrations at late summer. We used data from the VitmaD study. Participants were allocated to either vitamin D(3)-fortified bread and milk or non-fortified bread and milk during winter. In the fortification group, CYP2R1 (rs10741657) and GC (rs4588 and rs842999) were statistically significantly associated with winter 25(OH)D concentrations and CYP2R1 (rs10766197) was borderline significant. There was a negative linear trend between 25(OH)D concentrations and carriage of 0–8 risk alleles (p < 0.0001). No association was found for the control group (p = 0.1428). There was a significant positive linear relationship between different quintiles of total vitamin D intake and the increase in 25(OH)D concentrations among carriers of 0–2 (p = 0.0012), 3 (p = 0.0001), 4 (p = 0.0118) or 5 (p = 0.0029) risk alleles, but not among carriers of 6–8 risk alleles (p = 0.1051). Carriers of a high GRS were more prone to be vitamin D deficient compared to carriers of a low GRS. Furthermore, rs4588-AA carriers have a low but very stable 25(OH)D concentration, and interestingly, also low PTH level. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12263-014-0413-7) contains supplementary material, which is available to authorized users

    Common Variation in Vitamin D Pathway Genes Predicts Circulating 25-Hydroxyvitamin D Levels among African Americans

    Get PDF
    Vitamin D is implicated in a wide range of health outcomes, and although environmental predictors of vitamin D levels are known, the genetic drivers of vitamin D status remain to be clarified. African Americans are a group at particularly high risk for vitamin D insufficiency but to date have been virtually absent from studies of genetic predictors of circulating vitamin D levels. Within the Southern Community Cohort Study, we investigated the association between 94 single nucleotide polymorphisms (SNPs) in five vitamin D pathway genes (GC, VDR, CYP2R1, CYP24A1, CYP27B1) and serum 25-hydroxyvitamin D (25(OH)D) levels among 379 African American and 379 Caucasian participants. We found statistically significant associations with three SNPs (rs2298849 and rs2282679 in the GC gene, and rs10877012 in the CYP27B1 gene), although only for African Americans. A genotype score, representing the number of risk alleles across the three SNPs, alone accounted for 4.6% of the variation in serum vitamin D among African Americans. A genotype score of 5 (vs. 1) was also associated with a 7.1 ng/mL reduction in serum 25(OH)D levels and a six-fold risk of vitamin D insufficiency (<20 ng/mL) (odds ratio 6.0, p = 0.01) among African Americans. With African ancestry determined from a panel of 276 ancestry informative SNPs, we found that high risk genotypes did not cluster among those with higher African ancestry. This study is one of the first to investigate common genetic variation in relation to vitamin D levels in African Americans, and the first to evaluate how vitamin D-associated genotypes vary in relation to African ancestry. These results suggest that further evaluation of genetic contributors to vitamin D status among African Americans may help provide insights regarding racial health disparities or enable the identification of subgroups especially in need of vitamin D-related interventions

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Stimulation of rat hepatic UDP-glucuronosyl transferase activity following treatment with green tea.

    No full text
    Studies were conducted to investigate whether aqueous extracts of green tea, administered to rats at concentrations consumed by humans, could influence the phase II conjugation reactions in the liver, and so contribute to its established anticarcinogenic activity. Exposure of rats to green tea (2.5%, w/v), as the sole drinking fluid, for 4 wk did not influence sulfotransferase, epoxide hydrolase nor glutathione S-transferase activities. UDP glucuronosyl transferase activity, when determined using 2-aminophenol as the substrate, was increased by 100% following treatment with tea. Finally, green tea had no effect on the enzymes affording protection against reactive oxygen species, namely catalase, glutathione peroxidase and superoxide dismutase. It is postulated that the enhanced glucuronidation may contribute to the anticarcinogenic effect of green tea by facilitating the metabolism of chemical carcinogens into inactive, readily excretable products
    corecore