6 research outputs found

    Quantitative analysis of mutans streptococci adhesion to various orthodontic bracket materials in vivo

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사) --μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μΉ˜μ˜ν•™κ³Ό, 2009.2.Maste

    ZnO nanorod heterostructures for light emitting device applications

    No full text
    Doctor산화아연은 μ²­μžμƒ‰ λ°œκ΄‘μ†Œμž¬λ‘œ 널리 μ΄μš©λ˜λŠ” μ§ˆν™”κ°ˆλ₯¨κ³Ό μœ μ‚¬ν•œ 결정ꡬ쑰와 μ§μ ‘μ²œμ΄ν˜• λ°΄λ“œκ°­μ„ 가지고 μžˆμ–΄μ„œ μ°¨μ„ΈλŒ€ κ΄‘μ†Œμž¬λ‘œ μ£Όλͺ©λ°›κ³  μžˆλ‹€. 특히 μ‚°ν™”μ•„μ—° λ‚˜λ…Έμ†Œμž¬λŠ” λ‹€μ–‘ν•œ 기판 상에 높은 결정성을 μ§€λ‹ˆκ³  μ„±μž₯ν•  수 μžˆμ–΄μ„œ μ €λΉ„μš© 고효율 κ΄‘μ†Œμž 개발의 κΈ°λ³Έ μ†Œμž¬λ‘œ 이용될 κ°€λŠ₯성이 μžˆλ‹€.μ‚°ν™”μ•„μ—° λ‚˜λ…Έμ†Œμž¬λ₯Ό μ΄μš©ν•œ κ΄‘μ†Œμžλ₯Ό κ°œλ°œν•˜κΈ° μœ„ν•΄μ„œλŠ” μ†Œμž¬μ˜ 물성을 μ‘°μ ˆν•˜κ³  κ°œλ³„ λ‚˜λ…Έμ†Œμž¬ 기반의 μ†Œμžλ“€μ„ μ§‘μ ν™”ν•˜λŠ” κ³Όμ œκ°€ ν•΄κ²°λ˜μ–΄μ•Ό ν•œλ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ€ μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€μ˜ 물성을 도핑, μ–Όλ‘œμž‰μ„ ν†΅ν•œ 삼원계 ν™”ν•©λ¬Ό 제쑰, μ„±μž₯μœ„μΉ˜κ°€ 쑰절된 이쒅ꡬ쑰 제쑰 κΈ°μˆ μ„ μ΄μš©ν•˜μ—¬ μ œμ–΄ν•˜κ³  제쑰된 μ΄μ’…κ΅¬μ‘°λ“€μ˜ 광학적 νŠΉμ„±μ„ μ •λŸ‰μ μœΌλ‘œ 뢄석할 뿐 μ•„λ‹ˆλΌ μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€ 이쒅ꡬ쑰 μ–΄λ ˆμ΄λ₯Ό 기반으둜 ν•œ λ°œκ΄‘λ‹€μ΄μ˜€λ“œμ™€ νƒœμ–‘μ „μ§€λ₯Ό μ‹œμ—°ν•˜λŠ” 것을 λ‚΄μš©μœΌλ‘œ ν•œλ‹€.λ¨Όμ € μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€μ˜ 도핑을 μœ„ν•΄ μˆ˜μ†Œ ν”ŒλΌμ¦ˆλ§ˆ μ²˜λ¦¬μ™€ 갈λ₯¨ μ „κ΅¬μ²΄μ˜ 흐름을 λ³€μ‘°ν•˜λŠ” 기법을 κ°œλ°œν–ˆλ‹€. μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€λ₯Ό μ μ •ν•œ μ‘°κ±΄μ—μ„œ μˆ˜μ†Œ ν”ŒλΌμ¦ˆλ§ˆ μ²˜λ¦¬ν•  경우 전기전도도가 ν–₯μƒλ˜λŠ” 것을 κ΄€μ°°ν–ˆμœΌλ©° κ΄‘λ°œκ΄‘λΆ„μ„μ„ 톡해 μˆ˜μ†Œκ°€ μ‚°ν™”μ•„μ—° 내에 λ„λ„ˆλ‘œ μž‘μš©ν–ˆμŒμ„ ν™•μΈν–ˆλ‹€. 갈λ₯¨ μ „κ΅¬μ²΄μ˜ 흐름을 λ³€μ‘°ν•˜λŠ” 방법은 μ‚°ν™”μ•„μ—° λ‚˜λ…Έμ†Œμž¬ λ„ν•‘μ‹œ κ΅¬μ‘°λ³€ν˜•, 결함 μ€€μœ„μ˜ 증가와 같은 뢀정적인 효과λ₯Ό μ΅œμ†Œν™”ν•˜λ©΄μ„œ μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€μ˜ 전기적, 광학적 νŠΉμ„±μ„ μ‘°μ ˆν•  수 μžˆλŠ” λ°©λ²•μž„μ΄ ν™•μΈλ˜μ—ˆλ‹€. λ˜ν•œ 산화아연을 기반으둜 ν•œ κ΄‘μ†Œμž κ°œλ°œμ— 주된 걸림돌인 pν˜• μ‚°ν™”μ•„μ—° μ œμ‘°μ— λŒ€ν•œ 연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ—¬ μ‚°ν™”μ•„μ—° 박막 μ œμ‘°μ‹œ 인을 첨가할 경우 pν˜• μ „κΈ°μ „λ„νŠΉμ„±μ„ λ³΄μ΄λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€.μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€μ˜ λ°΄λ“œκ°­μ„ μ‘°μ ˆν•˜κΈ° μœ„ν•΄ μ‚°ν™”μ•„μ—°λ§ˆκ·Έλ„€μŠ˜ λ‚˜λ…Έλ§‰λŒ€λ₯Ό λΉ„μ΄‰λ§€μœ κΈ°κΈˆμ†ν™”ν•™κΈ°μƒμ¦μ°©λ²•μœΌλ‘œ μ„±μž₯ν•˜λŠ” 연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. μ„±μž₯된 μ‚°ν™”μ•„μ—°λ§ˆκ·Έλ„€μŠ˜ λ‚˜λ…Έλ§‰λŒ€λŠ” λ§ˆκ·Έλ„€μŠ˜μ˜ ν•¨λŸ‰μ— 따라 λ°œκ΄‘ μ—λ„ˆμ§€κ°€ 200 meV κΉŒμ§€ 증가됨을 λ³΄μ—¬μ£Όμ—ˆλ‹€. λ˜ν•œ μ‚°ν™”μ•„μ—°λ§ˆκ·Έλ„€μŠ˜ λ‚˜λ…Έλ§‰λŒ€μ˜ ꡬ쑰적, 광학적 νŠΉμ„±μ„ λΆ„μ„ν•œ κ²°κ³Ό μ‚°ν™”μ•„μ—°λ§ˆκ·Έλ„€μŠ˜μ„ λ‚˜λ…Έλ§‰λŒ€ ν˜•νƒœλ‘œ μ œμ‘°μ‹œ λ°•λ§‰μ΄λ‚˜ λ²Œν¬μ— λΉ„ν•΄ μ„±λΆ„λΆ„ν¬μ˜ λΆˆκ· μΌλ„κ°€ ν˜„μ €νžˆ κ°μ†Œν•˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€.μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€ 기반의 κ΄‘μ†Œμž κ°œλ°œμ„ μœ„ν•΄ 도핑과 λ°΄λ“œκ°­ 쑰절 외에도 물성이 쑰절된 μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€ 이쒅ꡬ쑰λ₯Ό 선택성μž₯ν•˜μ—¬ μ†Œμž μ§‘μ ν™”μ˜ μ΄ˆμ„μ„ λ‹¦λŠ” 연ꡬλ₯Ό μˆ˜ν–‰ν–ˆλ‹€. 이λ₯Ό μœ„ν•΄ μ „μžλΉ” λ¦¬μ†Œκ·Έλž˜ν”Όμ™€ λΉ„μ΄‰λ§€μœ κΈ°κΈˆμ†ν™”ν•™κΈ°μƒμ¦μ°©λ²•μ„ κ²°ν•©ν•˜μ—¬ μ‚°ν™”μ•„μ—° λ‚˜λ…ΈνŠœλΈŒλ₯Ό μ›ν•˜λŠ” μœ„μΉ˜μ— 선택성μž₯ν•˜κ³  μ„±μž₯된 λ‚˜λ…ΈνŠœλΈŒμ— μ΄μ’…λ¬Όμ§ˆμ„ μ½”νŒ…ν•œ λ‚˜λ…Έλ§‰λŒ€ ν˜Ήμ€ λ‚˜λ…ΈνŠœλΈŒ 이쒅ꡬ쑰 μ–΄λ ˆμ΄λ₯Ό μ„±μž₯ν–ˆλ‹€. λŒ€ν‘œμ μœΌλ‘œ μ‚°ν™”μ•„μ—° λ‚˜λ…ΈνŠœλΈŒμ— μ‚°ν™”μ•„μ—°λ§ˆκ·Έλ„€μŠ˜μΈ΅κ³Ό 산화아연측을 κ΅λŒ€λ‘œ μ¦μ°©ν•˜μ—¬ 동심배열 λ‹¨μΌμ–‘μžμš°λ¬Όκ΅¬μ‘°λ₯Ό μ œμ‘°ν•˜μ—¬ 선택성μž₯된 μ‚°ν™”μ•„μ—° λ‚˜λ…ΈνŠœλΈŒμ˜ λ°œκ΄‘ μ—λ„ˆμ§€λ₯Ό μ •λ°€ν•˜κ²Œ μ‘°μ ˆν•  수 μžˆμŒμ„ ν™•μΈν–ˆλ‹€.μ†Œμž¬μ˜ μ„±μž₯κΈ°μˆ μ„ μ΄μš©ν•œ λ¬Όμ„± 쑰절 연ꡬ 외에도 μ†Œμž¬μ˜ 물성을 μ •ν™•ν•˜κ²Œ ν‰κ°€ν•˜λŠ” 연ꡬ λ˜ν•œ μˆ˜ν–‰λ˜μ—ˆλ‹€. κ΄‘μ†Œμž κ°œλ°œμ„ μœ„ν•΄ μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€μ˜ 물성을 μ‘°μ ˆν•˜λŠ” 연ꡬλ₯Ό μ§„ν–‰ν•œ λ°” κ΄‘μ†Œμž¬μ˜ μ€‘μš”ν•œ νŠΉμ„±μΈ μ–‘μžνš¨μœ¨μ„ ν‰κ°€ν•˜λŠ” 연ꡬλ₯Ό μˆ˜ν–‰ν–ˆλ‹€. μ‚°ν™”μ•„μ—°μ˜ 경우 μ—¬κΈ°μž κ²°ν•©μ—λ„ˆμ§€κ°€ 60 meV에 λ‹¬ν•΄μ„œ μƒμ˜¨μ—μ„œμ˜ 광학적 νŠΉμ„±λ„ μ—¬κΈ°μžμ˜ 영ν–₯을 많이 λ°›λŠ”λ‹€. λ”°λΌμ„œ μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€μ™€ λ‚˜λ…Έλ§‰λŒ€ μ΄μ’…κ΅¬μ‘°μ—μ„œ μ—¬κΈ°μž μˆ˜μ†‘ νŠΉμ„±μ„ μ •λŸ‰μ μœΌλ‘œ κ΄€μ°°ν•˜κ³  μ—¬κΈ°μž μˆ˜μ†‘ νŠΉμ„±κ³Ό μ–‘μžνš¨μœ¨κ³Όμ˜ 상관관계λ₯Ό μ‘°μ‚¬ν•˜μ˜€λ‹€. λ‚˜λ…Έλ§‰λŒ€μ—μ„œμ˜ μ—¬κΈ°μž μˆ˜μ†‘ νŠΉμ„± 관찰을 μœ„ν•΄ μŒκ·Ήμ„  λ°œκ΄‘ 뢄석과 λ‚˜λ…Έλ§‰λŒ€ μ–‘μžκ΅¬μ‘°λ₯Ό κ²°ν•©ν•œ μƒˆλ‘œμš΄ 뢄석법을 κ°œλ°œν–ˆμœΌλ©° 이λ₯Ό 톡해 μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€ λ‚΄μ—μ„œμ˜ μ—¬κΈ°μž 확산거리λ₯Ό μ •ν™•ν•˜κ²Œ κ²°μ •ν•  수 μžˆμ—ˆλ‹€. μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€μ™€ λ‚˜λ…Έλ§‰λŒ€ μ΄μ’…κ΅¬μ‘°μ˜ μ‹œλΆ„ν•΄λΆ„κ΄‘νŠΉμ„±μ„ μ—°κ΅¬ν•˜μ—¬ μ—¬κΈ°μž μž¬κ²°ν•©μ˜ 동역학을 μ‘°μ‚¬ν–ˆμœΌλ©° μ‹œλΆ„ν•΄λΆ„κ΄‘νŠΉμ„±λΆ„μ„μ„ 톡해 μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€μ™€ λ‚˜λ…Έλ§‰λŒ€ μ΄μ’…κ΅¬μ‘°κ°„μ˜ μ–‘μžνš¨μœ¨μ°¨μ΄λ₯Ό λ°ν˜”λ‹€. 이에 λ”ν•˜μ—¬ μ—¬κΈ°μž 확산에 κ΄€ν•œ 곡간 정보와 κ²°ν•©ν•΄μ„œ μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€μ™€ λ‚˜λ…Έλ§‰λŒ€ μ΄μ’…κ΅¬μ‘°μ—μ„œμ˜ μ–‘μžνš¨μœ¨μ°¨μ΄λ₯Ό μ—¬κΈ°μž ν™•μ‚°μ˜ κ΄€μ μ—μ„œ μ„€λͺ…ν•˜μ˜€λ‹€.μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€μ˜ 물성을 μ‘°μ ˆν•˜κ³  ν‰κ°€ν•˜λŠ” 연ꡬλ₯Ό λ°”νƒ•μœΌλ‘œ 선택성μž₯된 μ‚°ν™”μ•„μ—° λ‚˜λ…ΈνŠœλΈŒμ— 인이 λ„ν•‘λœ 산화아연측을 μ½”νŒ…ν•˜μ—¬ 수직배ν–₯된 λ‚˜λ…Έλ§‰λŒ€ 이쒅ꡬ쑰 μ–΄λ ˆμ΄λ₯Ό μ œμ‘°ν•˜κ³  전극을 ν˜•μ„±ν•˜μ—¬ λ‚˜λ…Έλ§‰λŒ€ 이쒅ꡬ쑰 기반의 λ°œκ΄‘λ‹€μ΄μ˜€λ“œμ™€ νƒœμ–‘μ „μ§€ μ–΄λ ˆμ΄λ₯Ό κ°œλ°œν•˜μ—¬ 청색 μ „κ³„λ°œκ΄‘κ³Ό κ΄‘μ „νŠΉμ„±μ„ κ΄€μ°°ν–ˆλ‹€.ZnO nanomaterials have great potential for highly-efficient and novel photonic device applications due to their high crystallinity, wide and direct band gap, peculiar physical properties such as large exciton binding energy. Semiconductor photonic devices can be realized by tuning structural, electrical, and optical properties of semiconducting materials. In this dissertation, the methods for controlling characteristics of ZnO nanorods are presented, and the physical understanding on the control of the properties are discussed. Finally, some photonic devices such as light-emitting devices and solar cells based on ZnO nanorod heterostructures are demonstrated.The physical properties of ZnO nanorods were controlled by doping, alloying for band gap engineering, and formation of heterostructures. Current-voltage characteristics measurements and transfer characterizations of field-effect transistors based on doped ZnO nanorods exhibited that the electrical conductivity of ZnO nanorods could be precisely controlled without deterioriation such as structural deformation and optical quality degradation. Alloying with MgO in ZnO nanorods made it possible to tune band gap energy of ZnO in the ultraviolet wavelength region. The structural characterizations and the temperature-dependent PL measurements revealed that ternary alloyed MgZnO nanorods had improved homogeneity of elements compared to bulk and thin films counterparts. Additionally, the photoluminescent properties of position-controlled ZnO nanotube arrays were finely tuned by formation of heterostructures along radial direction of ZnO nanotubes.The quantum efficiency of ZnO nanorod heterostructures was quantitatively investigated by study on exciton transport in ZnO nanostructures. The precise and quantitative analysis technique for determination of exciton diffusion length in ZnO nanorods was developed using cathodoluminescence spectroscopy and ZnO nanorod single-quantum-wells. The combination of cathodoluminescence spectroscopy and time-resolved photoluminescence spectroscopy enabled to investigate exciton transport and internal quantum efficiency of ZnO nanorods in the quantitative manner. Through a series of experimental results, it was revealed that ZnO coaxial nanorod heterostructures can give gain of internal quantum efficiency of ZnO nanorods.The demonstration of photonic devices such as light-emitting devices and photovoltaic cells based on position-controlled ZnO nanorod heterostructures is presented. ZnO nanoarchitecture LED arrays were fabricated by position-controlled growth of ZnO nanotubes, doping in ZnO via phosphorous incorporation, and metallization technique for three-dimensional structures. The ZnO nanoarchitecture LED arrays exhibited electroluminescence which can be observed with unaided eyes under dark condition. Additionally, the photovoltaic characteristics of ZnO-based coaxial nanorod p-n junction arrays, ZnO:P/ZnO, were also investigated

    Quantitative analysis of mutans streptococci adhesion to various orthodontic bracket materials in vivo

    No full text
    λ²•λž‘μ§ˆ νƒˆνšŒλŠ” ꡐ정 치료 쀑에 λ°œμƒν•˜λŠ” λŒ€ν‘œμ μΈ λΆ€μž‘μš©μœΌλ‘œμ„œ 특히 κ΅μ •μš© λΈŒλΌμΌ“μ— λŒ€ν•œ μ„Έκ·  뢀착이 κ·Έ 원인이 될 수 μžˆλ‹€. λ³Έ μ—°κ΅¬μ˜ λͺ©μ μ€ μ„œλ‘œ λ‹€λ₯Έ ν‘œλ©΄ νŠΉμ„±μ„ 가진 μ„Έ μ’…λ₯˜μ˜ λΈŒλΌμΌ“μ„ ꡬ강 λ‚΄ μž₯μ°©ν–ˆμ„ λ•Œ 각 재료의 ν‘œλ©΄μ— λŒ€ν•œ mutans streptococci λΆ€μ°© 정도λ₯Ό μΈ‘μ •ν•˜μ—¬ λΈŒλΌμΌ“ μž¬λ£Œμ— λ”°λ₯Έ λ²•λž‘μ§ˆ νƒˆνšŒ 및 μΉ˜μ•„ μš°μ‹ λ°œμƒ κ°€λŠ₯성을 λΆ„μ„ν•˜λŠ” κ²ƒμ΄μ—ˆλ‹€. μƒν•˜μ•… 및 μΉ˜μ•„ λΆ€μœ„λ³„ mutans streptococci λΆ€μ°© μ •λ„μ˜ 차이λ₯Ό λ°°μ œν•˜κ³  λΈŒλΌμΌ“ μ›μž¬λ£Œμ— λ”°λ₯Έ μ°¨μ΄λ§Œμ„ κ²€μΆœν•˜κΈ° μœ„ν•˜μ—¬ κ· ν˜•μ™„μ „λΈ”λ‘ μ‹€ν—˜κ³„νšμ„ μ„€κ³„ν•˜μ˜€λ‹€. ν”Όμ‹€ν—˜μžμΈ 30μ„Έ μ—¬μ„±μ˜ ꡬ강 내에 μž₯μ°©ν•  수 μžˆλŠ” tooth positioner ν˜•νƒœλ‘œ 3μ„ΈνŠΈμ˜ ν”ŒλΌμŠ€ν‹± 맞좀 트레이λ₯Ό μ œμž‘ν•˜μ˜€μœΌλ©°, 이 νŠΈλ ˆμ΄μ— 직윑면체의 ν˜•νƒœ()둜 μ œμž‘ν•œ stainless steel, monocrystalline sapphire, polycrystalline alumina 쑰각을 μ„ΈνŠΈλ§ˆλ‹€ μ„œλ‘œ λ‹€λ₯Έ μˆœμ„œλ‘œ μ „μΉ˜λΆ€μ™€ κ΅¬μΉ˜λΆ€ μˆœλ©΄μ— λΆ€μ°©ν•˜μ˜€λ‹€ μ΄λ ‡κ²Œ μ œμž‘λœ 3μ’…λ₯˜μ˜ μ‹€ν—˜μž₯치λ₯Ό 12μ‹œκ°„ λ™μ•ˆ ν”Ό μ‹€ν—˜μžμ˜ ꡬ강 내에 μž₯μ°©ν•œ ν›„, 각 λΈŒλΌμΌ“ 재료 ν‘œλ©΄μ— ν˜•μ„±λœ μΉ˜νƒœλ₯Ό μ±„μ·¨ν•˜μ—¬ bacitracin이 ν¬ν•¨λœ mitis salivariusλ°°μ§€μ—μ„œ 48μ‹œκ°„ λ°°μ–‘ ν›„ colony counting을 톡해 κ·Έ ν‘œλ©΄μ— λΆ€μ°©λœ mutans streptococci 양을 λΉ„κ΅ν•˜μ˜€λ‹€. 이와 같은 λ°©λ²•μœΌλ‘œ 3μ„ΈνŠΈμ˜ μ‹€ν—˜μž₯μΉ˜μ— λŒ€ν•΄μ„œ 각각 5νšŒμ”© 총 15회의 μ‹€ν—˜μ„ μ‹œν–‰ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό μƒν•˜μ•… 및 μΉ˜μ•„ λΆ€μœ„λ³„ 및 λΈŒλΌμΌ“ μž¬λ£Œλ³„ μ„Έκ·  λΆ€μ°© μ •λ„λŠ” λͺ¨λ‘ μœ μ˜ν•œ 차이λ₯Ό 보이지 μ•Šμ•˜λ‹€. 결둠적으둜 λ³Έ μ—°κ΅¬μ˜ κ²°κ³Ό in vivo conditionμ—μ„œ λΈŒλΌμΌ“ 재료의 μ°¨μ΄λŠ” mutans streptococci 뢀착에 영ν–₯을 λ―ΈμΉ˜μ§€ λͺ»ν•˜λŠ” κ²ƒμœΌλ‘œ λ³΄μ˜€λ‹€. Objective: To estimate the effects of bracket material type on enamel decalcification during orthodontic treatment, this study analyzed the adhesion level of mutans streptococci (MS) to orthodontic bracket materials in vivo. Methods: Three different types of orthodontic bracket materials were used: stainless steel, monocrystalline sapphire, and polycrystalline alumina. A balanced complete block design was used to exclude the effect of positional variation of bracket materials in the oral cavity. Three types of plastic individual trays were made and one subject placed the tray in the mouth for 12 hours. Then, the attached bacteria were isolated and incubated on a mitis salivarius media containing bacitracin for 48 hours. Finally, the number of colony forming units of MS was counted. The experiments were independently performed 5 times with each of the 3 trays, resulting in a total of 15 times. Mixed model ANOVA was used to compare the adhesion amount of MS. Results: There was no difference in colony forming units among the bracket materials irrespective of jaw and tooth position. Conclusions: This study suggested that the result of quantitative analysis of MS adhesion to various orthodontic bracket materials in vivo may differ from that of the condition in vitro
    corecore