7 research outputs found

    A non-traditional approach to synthesizing aryl vinyl sulfides is described. 2,2-diphenyl-1,3-oxathiolane slowly liberates vinyl sulfide anion under basic conditions. Using a Pd/Xantphos catalyst system to activate a wide range of aryl bromides, this transient sulfide species can be effectively trapped and fed into a traditional Pd0/PdII catalytic cycle. Scope and limitations of the methodology are presented along with significant discussion of a competitive C–S bond activation by this catalyst system.

    Get PDF
    A non-traditional approach to synthesizing aryl vinyl sulfides is described. 2,2-diphenyl-1,3-oxathiolane slowly liberates vinyl sulfide anion under basic conditions. Using a Pd/Xantphos catalyst system to activate a wide range of aryl bromides, this transient sulfide species can be effectively trapped and fed into a traditional Pd0/PdII catalytic cycle. Scope and limitations of the methodology are presented along with significant discussion of a competitive C–S bond activation by this catalyst system

    Visible-Light-Activated Molecular Machines Kill Fungi by Necrosis Following Mitochondrial Dysfunction and Calcium Overload.

    No full text
    Invasive fungal infections are a growing public health threat. As fungi become increasingly resistant to existing drugs, new antifungals are urgently needed. Here, it is reported that 405-nm-visible-light-activated synthetic molecular machines (MMs) eliminate planktonic and biofilm fungal populations more effectively than conventional antifungals without resistance development. Mechanism-of-action studies show that MMs bind to fungal mitochondrial phospholipids. Upon visible light activation, rapid unidirectional drilling of MMs at ≈3 million cycles per second (MHz) results in mitochondrial dysfunction, calcium overload, and ultimately necrosis. Besides their direct antifungal effect, MMs synergize with conventional antifungals by impairing the activity of energy-dependent efflux pumps. Finally, MMs potentiate standard antifungals both in vivo and in an ex vivo porcine model of onychomycosis, reducing the fungal burden associated with infection

    Hemithioindigo-Based Visible Light-Activated Molecular Machines Kill Bacteria by Oxidative Damage.

    No full text
    Antibiotic resistance is a growing health threat. There is an urgent and critical need to develop new antimicrobial modalities and therapies. Here, a set of hemithioindigo (HTI)-based molecular machines capable of specifically killing Gram-positive bacteria within minutes of activation with visible light (455 nm at 65 mW c

    Nonlethal Molecular Nanomachines Potentiate Antibiotic Activity Against Gram-Negative Bacteria by Increasing Cell Permeability and Attenuating Efflux

    No full text
    Antibiotic resistance is a pressing public health threat. Despite rising resistance, antibiotic development, especially for Gram-negative bacteria, has stagnated. As the traditional antibiotic research and development pipeline struggles to address this growing concern, alternative solutions become imperative. Synthetic molecular nanomachines (MNMs) are molecular structures that rotate unidirectionally in a controlled manner in response to a stimulus, such as light, resulting in a mechanical action that can propel molecules to drill into cell membranes, causing rapid cell death. Due to their broad destructive capabilities, clinical translation of MNMs remains challenging. Hence, here, we explore the ability of nonlethal visible-light-activated MNMs to potentiate conventional antibiotics against Gram-negative bacteria. Nonlethal MNMs enhanced the antibacterial activity of various classes of conventional antibiotics against Gram-negative bacteria, including those typically effective only against Gram-positive strains, reducing the antibiotic concentration required for bactericidal action. Our study also revealed that MNMs bind to the negatively charged phospholipids of the bacterial inner membrane, leading to permeabilization of the cell envelope and impairment of efflux pump activity following light activation of MNMs. The combined effects of MNMs on membrane permeability and efflux pumps resulted in increased antibiotic accumulation inside the cell, reversing antibiotic resistance and attenuating its development. These results identify nonlethal MNMs as pleiotropic antibiotic enhancers or adjuvants. The combination of MNMs with traditional antibiotics is a promising strategy against multidrug-resistant Gram-negative infections. This approach can reduce the amount of antibiotics needed and slow down antibiotic resistance development, thereby preserving the effectiveness of our current antibiotics

    Light-activated molecular machines are fast-acting broad-spectrum antibacterials that target the membrane.

    No full text
    The increasing occurrence of antibiotic-resistant bacteria and the dwindling antibiotic research and development pipeline have created a pressing global health crisis. Here, we report the discovery of a distinctive antibacterial therapy that uses visible (405 nanometers) light-activated synthetic molecular machines (MMs) to kill Gram-negative and Gram-positive bacteria, including methicillin-resistan
    corecore