973 research outputs found

    Holding on or falling off: The attachment mechanism of epiphytic Anthurium obtusum changes with substrate roughness

    Get PDF
    Premise For vascular epiphytes, secure attachment to their hosts is vital for survival. Yet studies detailing the adhesion mechanism of epiphytes to their substrate are scarce. Examination of the root hair-substrate interface is essential to understand the attachment mechanism of epiphytes to their substrate. This study also investigated how substrate microroughness relates to the root-substrate attachment strength and the underlying mechanism(s). Methods Seeds of Anthurium obtusum were germinated, and seedlings were transferred onto substrates made of epoxy resin with different defined roughness. After 2 months of growth, roots that adhered to the resin tiles were subjected to anchorage tests, and root hair morphology at different roughness levels was analyzed using light and cryo scanning electron microscopy. Results The highest maximum peeling force was recorded on the smooth surface (glass replica, 0‚ÄȬĶm). Maximum peeling force was significantly higher on fine roughness (0, 0.3, 12‚ÄȬĶm) than on coarse (162‚ÄȬĶm). Root hair morphology varied according to the roughness of the substrate. On smoother surfaces, root hairs were flattened to achieve large surface contact with the substrate. Attachment was mainly by adhesion with the presence of a glue-like substance. On coarser surfaces, root hairs were tubular and conformed to spaces between the asperities on the surface. Attachment was mainly via mechanical interlocking of root hairs and substrate. Conclusions This study demonstrates for the first time that the attachment mechanism of epiphytes varies depending on substrate microtopography, which is important for understanding epiphyte attachment on natural substrates varying in roughness

    Intestinal blood flow in patients with chronic heart failure: A link with bacterial growth, gastrointestinal symptoms, and cachexia

    Get PDF
    Background: Blood flow in the intestinal arteries is reduced in patients with stable heart failure (HF) and relates to gastrointestinal (GI) symptoms and cardiac cachexia. Objectives: The aims of this study were to measure arterial intestinal blood flow and assess its role in juxtamucosal bacterial growth, GI symptoms, and cachexia in patients with HF. Methods: A total of 65 patients and 25 controls were investigated. Twelve patients were cachectic. Intestinal blood flow and bowel wall thickness were measured using ultrasound. GI symptoms were documented. Bacteria in stool and juxtamucosal bacteria on biopsies taken during sigmoidoscopy were studied in a subgroup by fluorescence in situ hybridization. Serum lipopolysaccharide antibodies were measured. Results: Patients showed 30% to 43% reduced mean systolic blood flow in the superior and inferior mesenteric arteries and celiac trunk (CT) compared with controls (p < 0.007 for all). Cachectic patients had the lowest blood flow (p < 0.002). Lower blood flow in the superior mesenteric artery and CT was correlated with HF severity (p < 0.04 for all). Patients had more feelings of repletion, flatulence, intestinal murmurs, and burping (p < 0.04). Burping and nausea or vomiting were most severe in patients with cachexia (p < 0.05). Patients with lower CT blood flow had more abdominal discomfort and immunoglobulin A‚Äďantilipopolysaccharide (r = 0.76, p < 0.02). Antilipopolysaccharide response was correlated with increased growth of juxtamucosal but not stool bacteria. Patients with intestinal murmurs had greater bowel wall thickness of the sigmoid and descending colon, suggestive of edema contributing to GI symptoms (p < 0.05). In multivariate regression analysis, lower blood flow in the superior mesenteric artery, CT (p < 0.04), and inferior mesenteric artery (p = 0.056) was correlated with the presence of cardiac cachexia. Conclusions: Intestinal blood flow is reduced in patients with HF. This may contribute to juxtamucosal bacterial growth and GI symptoms in patients with advanced HF complicated by cachexia

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV