475 research outputs found

    Bilateral Random Projections

    Full text link
    Low-rank structure have been profoundly studied in data mining and machine learning. In this paper, we show a dense matrix XX's low-rank approximation can be rapidly built from its left and right random projections Y1=XA1Y_1=XA_1 and Y2=XTA2Y_2=X^TA_2, or bilateral random projection (BRP). We then show power scheme can further improve the precision. The deterministic, average and deviation bounds of the proposed method and its power scheme modification are proved theoretically. The effectiveness and the efficiency of BRP based low-rank approximation is empirically verified on both artificial and real datasets.Comment: 17 pages, 3 figures, technical repor

    Hamming Compressed Sensing

    Full text link
    Compressed sensing (CS) and 1-bit CS cannot directly recover quantized signals and require time consuming recovery. In this paper, we introduce \textit{Hamming compressed sensing} (HCS) that directly recovers a k-bit quantized signal of dimensional nn from its 1-bit measurements via invoking nn times of Kullback-Leibler divergence based nearest neighbor search. Compared with CS and 1-bit CS, HCS allows the signal to be dense, takes considerably less (linear) recovery time and requires substantially less measurements (O(log⁑n)\mathcal O(\log n)). Moreover, HCS recovery can accelerate the subsequent 1-bit CS dequantizer. We study a quantized recovery error bound of HCS for general signals and "HCS+dequantizer" recovery error bound for sparse signals. Extensive numerical simulations verify the appealing accuracy, robustness, efficiency and consistency of HCS.Comment: 33 pages, 8 figure

    Unsupervised Domain Adaptation on Reading Comprehension

    Full text link
    Reading comprehension (RC) has been studied in a variety of datasets with the boosted performance brought by deep neural networks. However, the generalization capability of these models across different domains remains unclear. To alleviate this issue, we are going to investigate unsupervised domain adaptation on RC, wherein a model is trained on labeled source domain and to be applied to the target domain with only unlabeled samples. We first show that even with the powerful BERT contextual representation, the performance is still unsatisfactory when the model trained on one dataset is directly applied to another target dataset. To solve this, we provide a novel conditional adversarial self-training method (CASe). Specifically, our approach leverages a BERT model fine-tuned on the source dataset along with the confidence filtering to generate reliable pseudo-labeled samples in the target domain for self-training. On the other hand, it further reduces domain distribution discrepancy through conditional adversarial learning across domains. Extensive experiments show our approach achieves comparable accuracy to supervised models on multiple large-scale benchmark datasets.Comment: 8 pages, 6 figures, 5 tables, Accepted by AAAI 202
    • …