444 research outputs found

    Composite Fixed-Length Ordered Features for Palmprint Template Protection with Diminished Performance Loss

    Full text link
    Palmprint recognition has become more and more popular due to its advantages over other biometric modalities such as fingerprint, in that it is larger in area, richer in information and able to work at a distance. However, the issue of palmprint privacy and security (especially palmprint template protection) remains under-studied. Among the very few research works, most of them only use the directional and orientation features of the palmprint with transformation processing, yielding unsatisfactory protection and identification performance. Thus, this paper proposes a palmprint template protection-oriented operator that has a fixed length and is ordered in nature, by fusing point features and orientation features. Firstly, double orientations are extracted with more accuracy based on MFRAT. Then key points of SURF are extracted and converted to be fixed-length and ordered features. Finally, composite features that fuse up the double orientations and SURF points are transformed using the irreversible transformation of IOM to generate the revocable palmprint template. Experiments show that the EER after irreversible transformation on the PolyU and CASIA databases are 0.17% and 0.19% respectively, and the absolute precision loss is 0.08% and 0.07%, respectively, which proves the advantage of our method

    End-to-end Remote Sensing Change Detection of Unregistered Bi-temporal Images for Natural Disasters

    Full text link
    Change detection based on remote sensing images has been a prominent area of interest in the field of remote sensing. Deep networks have demonstrated significant success in detecting changes in bi-temporal remote sensing images and have found applications in various fields. Given the degradation of natural environments and the frequent occurrence of natural disasters, accurately and swiftly identifying damaged buildings in disaster-stricken areas through remote sensing images holds immense significance. This paper aims to investigate change detection specifically for natural disasters. Considering that existing public datasets used in change detection research are registered, which does not align with the practical scenario where bi-temporal images are not matched, this paper introduces an unregistered end-to-end change detection synthetic dataset called xBD-E2ECD. Furthermore, we propose an end-to-end change detection network named E2ECDNet, which takes an unregistered bi-temporal image pair as input and simultaneously generates the flow field prediction result and the change detection prediction result. It is worth noting that our E2ECDNet also supports change detection for registered image pairs, as registration can be seen as a special case of non-registration. Additionally, this paper redefines the criteria for correctly predicting a positive case and introduces neighborhood-based change detection evaluation metrics. The experimental results have demonstrated significant improvements

    ChatAgri: Exploring Potentials of ChatGPT on Cross-linguistic Agricultural Text Classification

    Full text link
    In the era of sustainable smart agriculture, a massive amount of agricultural news text is being posted on the Internet, in which massive agricultural knowledge has been accumulated. In this context, it is urgent to explore effective text classification techniques for users to access the required agricultural knowledge with high efficiency. Mainstream deep learning approaches employing fine-tuning strategies on pre-trained language models (PLMs), have demonstrated remarkable performance gains over the past few years. Nonetheless, these methods still face many drawbacks that are complex to solve, including: 1. Limited agricultural training data due to the expensive-cost and labour-intensive annotation; 2. Poor domain transferability, especially of cross-linguistic ability; 3. Complex and expensive large models deployment.Inspired by the extraordinary success brought by the recent ChatGPT (e.g. GPT-3.5, GPT-4), in this work, we systematically investigate and explore the capability and utilization of ChatGPT applying to the agricultural informatization field. ....(shown in article).... Code has been released on Github https://github.com/albert-jin/agricultural_textual_classification_ChatGPT.Comment: 24 pages,10+figures,46references.Both the first two authors, Biao Zhao and Weiqiang Jin, made equal contributions to this work. Corresponding author: Guang Yan

    Improved damage detection in Pelton turbines using optimized condition indicators and data-driven techniques

    Get PDF
    The health condition of hydraulic turbines is one of the most critical factors for the operation safety and financial benefits of a hydro power plant. After the massive entrance of intermittent renewable energies, hydropower units have to regulate their output much more frequently for the balancing of the power grid. Under these conditions, the components of the machine have to withstand harsher excitation forces, which are more likely to produce damage and eventual failure in the turbines. To ensure the reliability of these machines, improved condition monitoring techniques are increasingly demanded. In this article, the feasibility of upgrading condition monitoring of Pelton turbines using novel vibration indicators and data-driven techniques is discussed. The new indicators are selected after performing a detailed analysis of the dynamic behavior of the turbine using numerical models and field measurements. After that, factor analysis is carried out in order to assess which are the most informative indicators and to reduce the dimension of the input data. For the validation of the proposed method, monitoring data from an actual Pelton turbine that suffered from an important fatigue failure due to a crack propagation on the buckets have been used. The novel condition indicators as well as classical indicators based on the spectrum and harmonics levels have been obtained while the machine was in good operation, during different stages of damage and after repair. All of these have been used to train an artificial neural network model in order to predict the evolution of the crack until failure occurs. The results show that using the improved monitoring methodology enhances the ability to predict the appearance of damage in comparison to typical condition indicators.Peer ReviewedPostprint (author's final draft
    • …