808 research outputs found

    Detecting Semantic Parts on Partially Occluded Objects

    Get PDF
    In this paper, we address the task of detecting semantic parts on partially occluded objects. We consider a scenario where the model is trained using non-occluded images but tested on occluded images. The motivation is that there are infinite number of occlusion patterns in real world, which cannot be fully covered in the training data. So the models should be inherently robust and adaptive to occlusions instead of fitting / learning the occlusion patterns in the training data. Our approach detects semantic parts by accumulating the confidence of local visual cues. Specifically, the method uses a simple voting method, based on log-likelihood ratio tests and spatial constraints, to combine the evidence of local cues. These cues are called visual concepts, which are derived by clustering the internal states of deep networks. We evaluate our voting scheme on the VehicleSemanticPart dataset with dense part annotations. We randomly place two, three or four irrelevant objects onto the target object to generate testing images with various occlusions. Experiments show that our algorithm outperforms several competitors in semantic part detection when occlusions are present.Comment: Accepted to BMVC 2017 (13 pages, 3 figures

    Length Spectrum Rigidity for piecewise analytic Bunimovich Billiards

    Full text link
    In the paper, we establish Squash Rigidity Theorem - the dynamical spectral rigidity for piecewise analytic Bunimovich squash-type stadia. We also establish Stadium Rigidity Theorem - the dynamical spectral rigidity for piecewise analytic Bunimovich stadia whose flat boundaries are a priori fixed. In addition, for smooth Bunimovich squash-type stadia we compute the Lyapunov exponents along the maximal period two orbit, as well as the value of the Peierls' Barrier function from the maximal marked length spectrum associated to the rotation number 2n4n+1\frac{2n}{4n+1}

    Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery

    Get PDF
    At present, countless approaches to fault diagnosis in reciprocating machines have been proposed, all considering that the available machinery dataset is in equal proportions for all conditions. However, when the application is closer to reality, the problem of data imbalance is increasingly evident. In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance in the available data. Our approach first processes the vibration signals of the machine using a wavelet packet transform-based feature-extraction stage. Then, improved generative models are obtained with a dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier is created to address the diagnostic task. This methodology provides a considerable improvement with 99% of data imbalance over other approaches reported in the literature, showing performance similar to that obtained with a balanced set of data.National Natural Science Foundation of China, under Grant 51605406National Natural Science Foundation of China under Grant 7180104
    • …