263 research outputs found

    Cell-Based Therapies for Diabetic Complications

    Get PDF
    In recent years, accumulating experimental evidence supports the notion that diabetic patients may greatly benefit from cell-based therapies, which include the use of adult stem and/or progenitor cells. In particular, mesenchymal stem cells and the circulating pool of endothelial progenitor cells have so far been the most studied populations of cells proposed for the treatment of vascular complications affecting diabetic patients. We review the evidence supporting their use in this setting, the therapeutic benefits that these cells have shown so far as well as the challenges that cell-based therapies in diabetic complications put out

    Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update

    Get PDF
    Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15–20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents

    Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection

    Get PDF
    The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response

    p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics)

    Get PDF
    SARS-CoV-2 infection affects different organs and tissues, including the upper and lower airways, the lung, the gut, the olfactory system and the eye, which may represent one of the gates to the central nervous system. Key transcriptional factors, such as p53 and NF-kB and their reciprocal balance, are altered upon SARS-CoV-2 infection, as well as other key molecules such as the virus host cell entry mediator ACE2, member of the RAS-pathway. These changes are thought to play a central role in the impaired immune response, as well as in the massive cytokine release, the so-called cytokine storm that represents a hallmark of the most severe form of SARS-CoV-2 infection. Host genetics susceptibility is an additional key side to consider in a complex disease as COVID-19 characterized by such a wide range of clinical phenotypes. In this review, we underline some molecular mechanisms by which SARS-CoV-2 modulates p53 and NF-kB expression and activity in order to maximize viral replication into the host cells. We also face the RAS-pathway unbalance triggered by virus-ACE2 interaction to discuss potential pharmacological and pharmacogenomics approaches aimed at restoring p53/NF-kB and ACE1/ACE2 balance to counteract the most severe forms of SARS-CoV-2 infection

    Circulating levels of TNF-related apoptosis inducing-ligand are decreased in patients with large adult-type granulosa cell tumors-implications for therapeutic potential

    Get PDF
    Targeted treatments are needed for advanced adult-type granulosa cell tumors (AGCTs). We set out to assess tumor tissue and circulating levels of TNF-related apoptosis-inducing ligand (TRAIL), a promising anti-cancer cytokine, in patients affected by AGCT. We analyzed tissue expression of TRAIL in 127 AGCTs using immunohistochemistry or RT-PCR. Soluble TRAIL was measured by means of ELISA from 141 AGCT patient serum samples, as well as the conditioned media of 15 AGCT patient-derived primary cell cultures, and the KGN cell line. Tissue and serum TRAIL levels were analyzed in relationship with clinical parameters, and serum estradiol, FSH, and LH levels. We found that AGCT samples expressed TRAIL mRNA and protein at levels comparable to normal granulosa cells. AGCT cells did not release soluble TRAIL. TRAIL protein levels were decreased in tumors over 10 cm in diameter (p = 0.04). Consistently, circulating TRAIL levels correlated negatively to tumor dimension (p = 0.01). Circulating TRAIL levels negatively associated with serum estradiol levels. In multiple regression analysis, tumor size was an independent factor contributing to the decreased levels of soluble TRAIL in AGCT patients. AGCTs associate with significantly decreased tumor tissue and serum TRAIL levels in patients with a large tumor mass. These findings encourage further study of agonistic TRAIL treatments in patients with advanced or recurrent AGCT.Peer reviewe

    Sex/Gender-Specific Imbalance in CVD: Could Physical Activity Help to Improve Clinical Outcome Targeting CVD Molecular Mechanisms in Women?

    Get PDF
    In the last two decades, new insights have been gained regarding sex/gender-related differences in cardiovascular disease (CVD). CVD represents the leading cause of death worldwide in both men and women, accounting for at least one-third of all deaths in women and half of deaths in women over 50 years in developing countries. Important sex-related differences in prevalence, presentation, management, and outcomes of different CVDs have been recently discovered, demonstrating sex/gender-specific pathophysiologic features in the presentation and prognosis of CVD in men and women. A large amount of evidence has highlighted the role of sex hormones in protecting women from CVDs, providing an advantage over men that is lost when women reach the menopause stage. This hormonal-dependent shift of sex-related CVD risk consequently affects the overall CVD epidemiology, particularly in light of the increasing trend of population aging. The benefits of physical activity have been recognized for a long time as a powerful preventive approach for both CVD prevention and aging-related morbidity control. Exercise training is indeed a potent physiological stimulus, which reduces primary and secondary cardiovascular events. However, the underlying mechanisms of these positive effects, including from a sex/gender perspective, still need to be fully elucidated. The aim of this work is to provide a review of the evidence linking sex/gender-related differences in CVD, including sex/gender-specific molecular mediators, to explore whether sex- and gender-tailored physical activity may be used as an effective tool to prevent CVD and improve clinical outcomes in women

    serum soluble tumor necrosis factor related apoptosis inducing ligand levels in older subjects with dementia and mild cognitive impairment

    Get PDF
    Background: The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been involved in both physiological and pathological conditions, including va

    Extracellular human immunodeficiency virus type-1 Tat protein activates phosphatidylinositol 3-kinase in PC12 neuronal cells

    Get PDF
    We have here investigated the effect of the regulatory Tat protein of the human immunodeficiency virus type 1 (HIV-1) on the PI 3-kinase catalytic activity in PC12 rat pheochromocytoma cells. After as early as 1 min from the beginning of the treatment with recombinant HIV-1 Tat protein, a significant increase in the tyrosine phosphorylation levels of the p85 regulatory subunit of PI 3-kinase was noticed in 48 h serum-starved PC12 cells. Moreover, the addition of Tat to PC12 cells induced a great increase in PI 3-kinase immunoprecipitated with an anti-phosphotyrosine antibody with a peak of activity (19-fold increase with respect to the basal levels) after a 15-min treatment. This increase in PI 3-kinase activity was significantly higher in PC12 cell cultures supplemented with Tat protein than in cultures stimulated by 100 ng/ml nerve growth factor (NGF; 8-fold increase with respect to the basal levels). Further experiments showed that Tat protein was able to specifically activate PI 3-kinase at picomolar concentrations. In fact: (i) maximal activation of PI 3-kinase was observed at concentrations as low as 1 ng/ml and was specifically blocked by anti-Tat neutralizing antibody; (ii) a Tat-dependent activation was also observed in experiments in which PI 3-kinase activity was evaluated in either anti-Tyr(P) or anti-p85 immunoprecipitates; (iii) 100 nM wortmannin completely blocked the Tat-mediated increase in PI 3-kinase activity both in vitro and in vivo. Our data strongly support the concept that extracellular Tat acts as a cell stimulator, inducing intracellular signal transduction in uninfected cells
    corecore