2,551 research outputs found

    Study of the ψ(2S)π+π− final state at BABAR

    Get PDF
    We present new results on the study of the ψ(2S)π+π− final state from the BABAR experiment located at the PEP-II asymmetric energy e+e− storage ring at the SLAC National Accelerator Laboratory

    Bionanocomposites based on chitosan and few layers graphene. The effect of tailor-made functionalization

    Get PDF
    Bionanocomposites are an emerging class of material. They are designed and developed to achieve advanced structural and functional properties, by using biobased polymers. Among the bio-polymers, focus is on chitosan (CS), poly (N-acetyl-D-glucosamine), a copolymer of [1,4]-linked 2-acetamido-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose. Research is steadily increasing on bionanocomposites with graphene and graphene related materials. It is here presented a research on bionanocomposites based on CS and graphene layers (G). Particular focus of the research was on the integration of the graphene layers in the nanocomposite. Materials were prepared based on the supramolecular interaction between CS and G. The core of the research was then on the edge functionalization of the layers. OH groups were added through the cycloaddition reaction with a biosourced pyrrole compound, serinol pyrrole (SP), carried out with the help of either thermal or mechanical energy, with an atom efficiency up to 96% and a very low E Factor. The preparation of CS/G adducts was very simple, even by using only mortar and pestle. OH groups were also added to the G edges by performing the reaction of G with KOH. The Reimer-Tiemann reaction on the G-OH adduct led to the introduction of aldehydic groups, which promote the crosslinking of CS. The CS/G adducts were characterized by means of wide angle X-ray diffraction, scanning and transmission electron microscopy, Fourier transform infrared, X-ray photoelectron and Raman spectroscopies. Thermal stability of the composites was studied by thermogravimetric analysis. Carbon papers and aerogels were prepared, studying the flexibility and the stability in various solvents in a wide pH range

    Structure determination, thermal stability and dissolution rate of 6-indomethacin

    Get PDF
    The structure solution of the δ-polymorph of indomethacin was obtained using three-dimensional electron diffraction. This form shows a significantly enhanced dissolution rate compared with the more common and better studied α- and γ-polymorphs, indicating better biopharmaceutical properties for medicinal applications. The structure was solved in non-centrosymmetric space group P21 and comprises two molecules in the asymmetric unit. Packing and molecule conformation closely resemble indomethacin methyl ester and indomethacin methanol solvate. Knowledge of the structure allowed the rational interpretation of spectroscopic IR and Raman data for δ-polymorph and a tentative interpretation for still unsolved indomethacin polymorphs. Finally, we observed a solid–solid transition from δ-polymorph to α-polymorph that can be driven by similarities in molecular conformation

    Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond

    Get PDF
    Chamberlin and Salisbury's assessment of the Permian a century ago captured the essence of the period: it is an interval of extremes yet one sufficiently recent to have affected a biosphere with near-modern complexity. The events of the Permian - the orogenic episodes, massive biospheric turnovers, both icehouse and greenhouse antitheses, and Mars-analog lithofacies - boggle the imagination and present us with great opportunities to explore Earth system behavior. The ICDP-funded workshops dubbed "Deep Dust," held in Oklahoma (USA) in March 2019 (67 participants from nine countries) and Paris (France) in January 2020 (33 participants from eight countries), focused on clarifying the scientific drivers and key sites for coring continuous sections of Permian continental (loess, lacustrine, and associated) strata that preserve high-resolution records. Combined, the two workshops hosted a total of 91 participants representing 14 countries, with broad expertise. Discussions at Deep Dust 1.0 (USA) focused on the primary research questions of paleoclimate, paleoenvironments, and paleoecology of icehouse collapse and the run-up to the Great Dying and both the modern and Permian deep microbial biosphere. Auxiliary science topics included tectonics, induced seismicity, geothermal energy, and planetary science. Deep Dust 1.0 also addressed site selection as well as scientific approaches, logistical challenges, and broader impacts and included a mid-workshop field trip to view the Permian of Oklahoma. Deep Dust 2.0 focused specifically on honing the European target. The Anadarko Basin (Oklahoma) and Paris Basin (France) represent the most promising initial targets to capture complete or near-complete stratigraphic coverage through continental successions that serve as reference points for western and eastern equatorial Pangaea. © 2020 Copernicus GmbH. All rights reserved

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS