32 research outputs found

    X-ray Diffraction Study of Superstructure in GdBaCo2O5.5

    Full text link
    A single crystal of GdBaCo2O5.47(2) has been studied by means of X-ray diffraction. Appearance of superstructure reflections at T = 341.5(7) K gives an evidence of continuous transition to the phase with unit cell doubled along the shortest edge a1. Critical exponent for the order parameter is found to be beta=0.33(1). The superstructure reflections are about 2-4 orders of magnitude weaker than the basic ones. Their systematic extinction indicates the crystal symmetry change from Pmmm to Pmma. The integrated intensities allow to calculate displacements of atoms from the positions in the high-temperature phase. The cobalt-ligand distances in the ordered phase are discussed in terms of the spin-state/orbital ordering of Co3+ ions.Comment: 4 page

    Neutron diffraction, magnetization and ESR studies of pseudocubic Nd(0.75)Ba(0.25)MnO3 and its unusual critical behavior above Tc

    Full text link
    Results of structural neutron diffraction study, magnetization and ESR measure-ments are presented for insulating Nd0.75Ba0.25MnO3, Tc = 129 K. The crystal structure is refined in the range 4.2-300 K. The compound is found to exhibit the Jahn-Teller (JT) transition at 250 K. The field cooled (FC) magnetization data are in a reasonable agreement with the predictions for a 3D isotropic ferromagnet above Tc. However, these measurements reveal a difference between the FC and zero FC data in the paramagnetic region. ESR results are also in a correspondence with behavior of a cubic ferromagnet above T* = 143 K. It is shown that an anisotropic exchange coupling of the Mn and Nd magnetic moments can give a substantial contribution in ESR linewidth masking its critical enhan-cement. The different temperature treatments of the sample reveal a temperature hysteresis of the ESR spectra below T* indicating an anomalous response in the paramagnetic region. The study of phase transition in this manganite suggests change in its character from the second to first order at T*. The conventional free energy including the magnetization and magnetic field is not found to describe the first order transition. This suggests that the charge, orbital and JT phonon degrees of freedom, in addition to magnetization, may be the critical variables, the unusual character of the transition being determined by their coupling. Unconventional critical behavior is attributed to orbital liquid metallic phase that coexists with the initial orbital ordered phase below T*.Comment: 18 pages, 5 figures, submitted to Phys. Rev.