2 research outputs found

    Network Science and Group Fusion Similarity-Based Searching to Explore the Chemical Space of Antiparasitic Peptides

    No full text
    Antimicrobial peptides (AMPs) have appeared as promising compounds to treat a wide range of diseases. Their clinical potentialities reside in the wide range of mechanisms they can use for both killing microbes and modulating immune responses. However, the hugeness of the AMPs’ chemical space (AMPCS), represented by more than 1065 unique sequences, has represented a big challenge for the discovery of new promising therapeutic peptides and for the identification of common structural motifs. Here, we introduce network science and a similarity searching approach to discover new promising AMPs, specifically antiparasitic peptides (APPs). We exploited the network-based representation of APPs’ chemical space (APPCS) to retrieve valuable information by using three network types: chemical space (CSN), half-space proximal (HSPN), and metadata (METN). Some centrality measures were applied to identify in each network the most important and nonredundant peptides. Then, these central peptides were considered as queries (Qs) in group fusion similarity-based searches against a comprehensive collection of known AMPs, stored in the graph database StarPepDB, to propose new potential APPs. The performance of the resulting multiquery similarity-based search models (mQSSMs) was evaluated in five benchmarking data sets of APP/non-APPs. The predictions performed by the best mQSSM showed a strong-to-very-strong performance since their external Matthews correlation coefficient (MCC) values ranged from 0.834 to 0.965. Outstanding MCC values (>0.85) were attained by the mQSSM with 219 Qs from both networks CSN and HSPN with 0.5 as similarity threshold in external data sets. Then, the performance of our best mQSSM was compared with the APPs prediction servers AMPDiscover and AMPFun. The proposed model showed its relevance by outperforming state-of-the-art machine learning models to predict APPs. After applying the best mQSSM and additional filters on the non-APP space from StarPepDB, 95 AMPs were repurposed as potential APP hits. Due to the high sequence diversity of these peptides, different computational approaches were applied to identify relevant motifs for searching and designing new APPs. Lastly, we identified 11 promising APP lead candidates by using our best mQSSMs together with diversity-based network analyses, and 24 web servers for activity/toxicity and drug-like properties. These results support that network-based similarity searches can be an effective and reliable strategy to identify APPs. The proposed models and pipeline are freely available through the StarPep toolbox software at http://mobiosd-hub.com/starpep

    <i>Dry</i> selection and <i>wet</i> evaluation for the <i>rational</i> discovery of new anthelmintics

    No full text
    <p>Helminths infections remain a major problem in medical and public health. In this report, atom-based 2D bilinear indices, a <i>TOMOCOMD-</i><i>CARDD</i> (QuBiLs-MAS module) molecular descriptor family and linear discriminant analysis (LDA) were used to find models that differentiate among anthelmintic and non-anthelmintic compounds. Two classification models obtained by using non-stochastic and stochastic 2D bilinear indices, classified correctly 86.64% and 84.66%, respectively, in the training set. Equation 1(2) correctly classified 141(135) out of 165 [85.45%(81.82%)] compounds in external validation set. Another LDA models were performed in order to get the most likely mechanism of action of anthelmintics. The model shows an accuracy of 86.84% in the training set and 94.44% in the external prediction set. Finally, we carry out an experiment to predict the biological profile of our ‘in-house’ collections of indole, indazole, quinoxaline and cinnoline derivatives (∼200 compounds). Subsequently, we selected a group of nine of the theoretically most active structures. Then, these chemicals were tested in an <i>in</i> <i>vitro</i> assay and one good candidate (VA5-5c) as fasciolicide compound (100% of reduction at concentrations of 50 and 10 mg/L) was discovered.</p