31,253 research outputs found

    An LU implicity scheme for high speed inlet analysis

    Get PDF
    A numerical method is developed to analyze the inviscid flowfield of a high speed inlet by the solution of the Euler equations. The lower-upper implicit scheme in conjunction with adaptive dissipation proves to be an efficient and robust nonoscillatory shock capturing technique for high Mach number flows as well as for transonic flows

    Initial Observations of Sunspot Oscillations Excited by Solar Flare

    Full text link
    Observations of a large solar flare of December 13, 2006, using Solar Optical Telescope (SOT) on Hinode spacecraft revealed high-frequency oscillations excited by the flare in the sunspot chromosphere. These oscillations are observed in the region of strong magnetic field of the sunspot umbra, and may provide a new diagnostic tool for probing the structure of sunspots and understanding physical processes in solar flares.Comment: 10 pages, 6 figures, ApJL in pres

    Nano granular metallic Fe - oxygen deficient TiO2δ_{2-\delta} composite films: A room temperature, highly carrier polarized magnetic semiconductor

    Full text link
    Nano granular metallic iron (Fe) and titanium dioxide (TiO2δ_{2-\delta}) were co-deposited on (100) lanthanum aluminate (LaAlO3_3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. The co-deposition of Fe and TiO2_2 resulted in \approx 10 nm metallic Fe spherical grains suspended within a TiO2δ_{2-\delta} matrix. The films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss at room temperature. Our estimate of the saturation magnetization based on the size and distribution of the Fe spheres agreed well with the measured value. The film composite structure was characterized as p-type magnetic semiconductor at 300 K with a carrier density of the order of 1022/cm3 10^{22} /{\rm cm^3}. The hole carriers were excited at the interface between the nano granular Fe and TiO2δ_{2-\delta} matrix similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. From the large anomalous Hall effect directly observed in these films it follows that the holes at the interface were strongly spin polarized. Structure and magneto transport properties suggested that these PLD films have potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure

    Off-diagonal magnetoimpedance in field-annealed Co-based amorphous ribbons

    Full text link
    The off-diagonal magnetoimpedance in field-annealed CoFeSiB amorphous ribbons was measured in the low-frequency range using a pick-up coil wound around the sample. The asymmetric two-peak behavior of the field dependence of the off-diagonal impedance was observed. The asymmetry is attributed to the formation of a hard magnetic crystalline phase at the ribbon surface. The experimental results are interpreted in terms of the surface impedance tensor. It is assumed that the ribbon consists of an inner amorphous region and surface crystalline layers. The coupling between the crystalline and amorphous phases is described through an effective bias field. A qualitative agreement between the calculated dependences and experimental data is demonstrated. The results obtained may be useful for development of weak magnetic-field sensors.Comment: 19 pages, 6 figure

    On the origin of microturbulence in hot stars

    Full text link
    We present results from the first extensive study of convection zones in the envelopes of hot massive stars, which are caused by opacity peaks associated with iron and helium ionization. These convective regions can be located very close to the stellar surface. Recent observations of microturbulence in massive stars from the VLT-Flames survey are in good agreement with our predictions concerning the occurrence and the strength of sub-surface convection in hot stars. We argue further that convection close to the surface may trigger clumping at the base of the stellar wind of massive stars.Comment: to appear in Comm. in Astroseismology - Proceedings of the 38th LIAC/HELAS-ESTA/BAG, 200
    corecore