193 research outputs found

    Control of scar tissue formation in the cornea: strategies in clinical and corneal tissue engineering

    Get PDF
    Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation

    Investigating the relationship between surface properties of polymers and protein adsorption [Abstract]

    Get PDF
    Investigating the relationship between surface properties of polymers and protein adsorption [Abstract

    Chemical and topographical effects on cell differentiation and matrix elasticity in a corneal stromal layer model

    Get PDF
    Control and maintenance of the keratocyte phenotype is vital to developing in vitro tissue engineered strategies for corneal repair. In this study the influence of topographical and chemical cues on the mechanical, phenotypical and genotypical behaviour of adult human derived corneal stromal (AHDCS) cells in three dimensional (3D) multi-layered organised constructs is examined. Topographical cues are provided via multiple aligned electrospun nanofiber meshes, which are arranged orthogonally throughout the constructs and are capable of aligning individual cells and permitting cell migration between the layers. The influence of chemical cues is examined using different supplements in culture media. A non-destructive indentation technique and optical coherence tomography are used to determine the matrix elasiticity (elastic modulus) and dimensional changes, respectively. These measurements were indicative of changes in cell phenotype from contractile fibroblasts to quiescent keratocytes over the duration of the experiment and corroborated by qPCR. Constructs containing nanofibers have a higher initial modulus, reduced contraction and organised cell orientation compared to those without nanofibers. Cell-seeded constructs cultured in serum-containing media increased in modulus throughout the culture period and underwent significantly more contraction than constructs cultured in serum-free and insulin-containing media. This implies that the growth factors present in serum promote a fibroblast-like phenotype; qPCR data further validates these observations. These results indicate that the synergistic effect of nanofibers and serum-free media plus insulin supplementation provide the most suitable topographical and chemical environment for reverting corneal fibroblasts to a keratocyte phenotype in a 3D construct

    Chemical and spatial influence on corneal stromal cell phenotype [Abstract]

    No full text
    Chemical and spatial influence on corneal stromal cell phenotype [Abstract

    Controlling and online monitoring in a corneal stromal model [Abstract]

    No full text
    Controlling and online monitoring in a corneal stromal model [Abstract